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Electron cyclotron resonance heating and current drive are modeled in tokamak geometry taking
into account nonlinear wave-particle interaction and the inhomogeneity of the distribution function
on magnetic surfaces. The model includes self-consistently coupled beam tracing and Monte Carlo
computations of the electron distribution function. The method of Green’s function for the
computation of the generated current is described. For the Axisymmetric Divertor Experiment
Upgrade[Leutereret al., Fusion Eng. Des.53, 485 (2001)] parameters and high beam focusing,
nonlinear wave-particle interaction effects appear to be important for perpendicular launch of the
microwave beam and not important for oblique launches where they stay below the “threshold.”
With defocusing the beam two to three times along the direction of the magnetic field nonlinear
effects of wave-particle interaction start to be important also for oblique launches. The effect of
decreased current in case of increasing the microwave beamwidth is demonstrated. The decrease of
both power absorption and generated current around low-order rational magnetic surfaces is found.
Its possible effect on the tearing mode stability index is discussed. ©2005 American Institute of
Physics. [DOI: 10.1063/1.1823415]

I. INTRODUCTION

Electron cyclotron resonance heating(ECRH) and elec-
tron cyclotron current drive(ECCD) are standard methods of
heating and sustainment of the stationary plasma current in
toroidal fusion devices(tokamaks and stellarators). An im-
portant feature of these methods is the high localization of
both power deposition and ECCD current profiles, which
makes them useful for the control of the radial current pro-
file. In particular, a very precise positioning of the generated
current around a given magnetic surface is necessary for the
suppression of neoclassical tearing modes(NTM) in toka-
maks. Therefore, the accurate modeling of ECRH and ECCD
is a practically important problem.

At the present time, such a modeling is performed in the
framework of linear theory of wave propagation and absorp-
tion with the help of ray-tracing or beam-tracing methods,
which are well justified by the fact that the parameter of
geometrical optics, namely, the ratio of the wavelength to the
characteristic scale of plasma or magnetic field inhomogene-
ity, is typically very small. In standard ECRH(ECCD) sce-
narii using the fundamental cyclotron resonance for the ordi-

nary wave mode(O mode) or the second harmonic resonance
for the extraordinary wave mode(X mode), the wave propa-
gation problem is solved using the cold plasma dielectric
permittivity while thermal effects, which provide the correc-
tion to the permittivity responsible for the wave absorption,
are taken into account by means of the wave absorption co-
efficient which is small compared to the wave vector. The
expressions for this coefficient for the homogeneous Max-
wellian plasma in a uniform magnetic field are used in most
cases where ECRH/ECCD is modeled on the basis of linear
theory.

The assumption that the electron distribution function is
close to a Maxwellian is usually justified by the fact that, in
off-axis heating scenarii, the magnetic surface average of the
heating power per electron is small compared to the power
exchanged by a given electron with other electrons via Cou-
lomb collisions, which restore the Maxwellian distribution
much faster than quasilinear effects distort it. However, this
argument is not generally valid because it does not take into
account the fact that power is highly localized both, in space,
within the small interaction region on the magnetic surface
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where the microwave beam crosses it, and in velocity space
where the interaction is localized in a narrow resonance
zone. There are two possibilities for the formation of essen-
tially non-Maxwellian distribution functions in case of off-
axis ECRH(ECCD).

The first of these possibilities is connected with the non-
linearity of wave-particle interaction within the beam,
namely, with the trapping of resonant particles by the wave.
In Ref. 1 it has been shown that this effect is important
already in present day experiments with second harmonic
X-mode ECRH. The nonlinearity can be roughly character-
ized by the nonlinear change of the wave-particle phase after
a single pass of the particle through the microwave beam. In
case of second harmonicX-mode resonance this parameter is
given aseNL,sLiv /cdsE0/B0d1/2 tanx, whereLi, v, c, E0,
and B0 are the parallel beamwidth, the wave frequency, the
speed of light, the amplitude of both the wave electric field,
and main magnetic field, respectively. Here tanx=v' /vi is
the tangent of the pitch angle. For the case of fundamental
resonance for theO mode,eNL,sLiv /cdsE0/B0d1/2 tan1/2 x.
For present day experimental parameters, for tanx,1, these
parameters approach unity. In the reactor case, these param-
eters will be increased because of the increased beamwidth,
and the increased magnetic fieldsv,B0d.

Another possibility for a strongly non-Maxwellian distri-
bution function is given by ECRH(ECCD) in the vicinity of
low-order rational magnetic surfaces(see Ref. 2). In this
case, electrons leaving the microwave beam can reenter it
several times after only a few toroidal rotations. Even if the
nonlinearity is smalleNL!1 the time between reentries is too
short for Coulomb collisions to destroy small modifications
of the distribution function caused by the wave. Thus, these
modifications can accumulate during few successive elec-
trons passes through the microwave beam along their “short
path,” leading to a significant deviation of the distribution
function from a Maxwellian.

ECRH (ECCD) modeling in such cases must include,
besides ray(beam) tracing, a separate procedure for the com-
putation of wave absorption which is not described by linear
theory anymore. This requires the computation of the elec-
tron distribution function. Based on a Monte Carlo method,
such a procedure of the computation of the distribution func-
tion has been developed in Ref. 1. The main focus in that
paper was on the proper description of the nonlinear wave-
particle interaction with the microwave beam while the ge-
ometry of the main magnetic field outside the beam was
assumed as simple as possible. In the present paper, a more
realistic geometry of the tokamak magnetic field is consid-
ered. The problem of wave propagation in this geometry is
solved using the beam tracing code TORBEAM,3 which has
been modified in order to use the nonlinear absorption coef-
ficient obtained from the kinetic modeling with the Monte
Carlo code ECNL. The problem geometry and the coupling
of TORBEAM with ECNL are described in Sec. II.

In contrast to the precedent work1 where only the per-
pendicular propagation of the wave beam with respect to the
main magnetic field has been modeled, the general case of an
arbitrary propagation angle is treated for midplane launching
scenarii. Unlike the computation of absorbed power, the cal-

culation of the current driven by the wave is a more compli-
cated problem whenever the electron distribution functionf
is modeled with a Monte Carlo method. Indeed, although the
local changes inf in the resonance zone can be significant,
the overall change off remains very small: the average par-
allel electron velocityVi is much smaller than the thermal
velocity vT. Therefore, the statistical noise appearing when
modeling f results in large fluctuations inVi. In order to
overcome this difficulty, similar to the method used in the
linear theory of the current drive, a method for the compu-
tation of current using Green’s function(current drive effi-
ciency) has been implemented in ECNL. This method is dis-
cussed in Sec. III C.

Section IV presents the results of the modeling obtained
for the Axisymmetric Divertor Experiment Upgrade4 (AS-
DEX Upgrade) parameters. In particular, as found in the
modeling, the sensitivity of ECRH and ECCD to the pres-
ence of rational magnetic surfaces is demonstrated together
with its effect on the tearing mode stability.

Finally, the applicability of both the model and the re-
sults of the modeling are discussed in Sec. V.

II. WAVE ABSORPTION IN A TOKAMAK GEOMETRY

For the computations using the TORBEAM-ECNL com-
bination of codes, the analytic equilibrium model of the to-
kamak has been used,

R= R0 + r cosu − Dsrd, Z = rkesrdsinu, s1d

where lines r =const correspond to the poloidal cross-
sections,w=const of the magnetic surfaces in cylindrical co-
ordinatessR,Z,wd. Here,Dsrd and kesrd are the Shafranov
shift and the elongation, respectively. Temperature, density,
and safety factor profiles are parabolic,

ne = nesrd = n0 + sn1 − n0d
r2

a2 , s2d

Te = Tesrd = Te0 + sT1 − Te0d
r2

a2 , s3d

q = qsrd = q0 + sq1 − q0d
r2

a2 , s4d

wherea is the minor radius.
Within the beam-tracing model used in TORBEAM, the

wave electric field is assumed in the form,

Ẽsr ,td = AstdRefstdexpfissr ,td − fsr ,td − ivtg, s5d

wheret is the reference ray parameter,Astd and fstd are the
wave amplitude and the polarization vector computed on the
reference ray,ssr ,td andfsr ,td are the real and the complex
phases, which describe the curvature of the wave front and
the beam localization around the reference ray, andv is the
wave frequency, respectively. Here some renotation has been
made as compared to Ref. 3. The parametert=tsr d is the
solution to
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fr − qstdg
dqstd

dt
= 0, s6d

whereqstd are the coordinates of the reference ray. In cases
of interest, Eq.(6) has a unique solution in the vicinity of the
reference rayur −quøL', whereL' is a typical perpendicu-
lar beamwidth. The phasess andf in Eq. (5) are represented
by quadratic polynomial expansions over coordinates around
the reference rayr −qstd such that the shape of the beam is
Gaussian. In the standard approach of beam tracing, the
wave absorption is taken into account in the amplitude which
changes along the reference ray according to usual geometric
optics,

dW

dl
= − WS 1

vg
= ·vg + aD , s7d

W=
uẼu2

16p
f * · S 1

v

]

]v
v2«̂D · f , s8d

wherel is the distance counted along the reference ray,vg is
the group velocity,W is the wave energy density, and«̂ is the
dielectric permittivity tensor of the cold plasma. In Eq.(7), a
is the absorption coefficient,

a =
pabs

vgW
=

2vk ·vg

ckvg
k, s9d

wherepabs is the absorbed power density,k = =ssr ,tdut=tsr d is
the wave vector,c is the speed of light, andk is the absorp-
tion index (imaginary part of the refraction index) obtained
from the anti-Hermitian part of the dielectric permittivity
tensor of the homogeneous plasma in a homogeneous mag-
netic field. Equation(7) approximates within geometrical op-
tics the energy conservation law,

= ·S+ pabs= 0, s10d

whereS is the Poynting vector,

S< vgW=
cuẼu2

8pv
fk − Resfk · f * dg. s11d

As long as the linear relation(9) betweena andpabs is valid
and the spatial scale of the absorption coefficient as well as
the absorption length are much larger than the beamwidth,
Eq. (7) represents the total power balance in the beam. The
exact total power balance is obtained by integrating Eq.(10)
over the volume between two surfaces which are close to
each other and which are not tangential to the beam. For
midplane off-axis ECCD scenarii with the resonance zone
located on the high field side, a convenient choice for these
surfaces is given by magnetic surfaces, which results in

dPbsXd
dX

= −E
−p

p

duE
−p

p

dwÎgpabs, s12d

Pb ; E
−p

p

duE
−p

p

dwÎgS · = X, s13d

whereÎg is the Jacobian of coordinatesX, u, w. Here, the
distance from the magnetic surface to the main torus axis,

X = Xsrd = R0 − r − Dsrd s14d

is used instead ofr as an independent variable for labeling
the magnetic surfaces. Ignoring small variations ofa andvg

within the beam in Eqs.(11) and(9) as well as such a varia-
tion of vg·= r, one obtains

dPb

dX
=

a

cosb
Pb, s15d

where b is the angle between the normal to the magnetic
surface=X and the group velocity at the intersection point of
the reference ray with the surface.

The local relation(9) between the wave energy density
and the absorbed power density is, strictly speaking, not
valid even in linear theory because cyclotron absorption is an
essentially nonlocal process: the energy coupled to the field
by an electron in a given spatial point of the wave beam is
determined by the interaction of this electron with the wave
on its whole path through the beam. However, usually, the
violation of the local relation is small as long as the change
of the absorption coefficient within the beam due to the mag-
netic field variation along the field line is small as well as the
uncertainty in this coefficient due to the finite width of the
wave spectrum of parallel wave numberski. Thus, the influ-
ence of the absorption on the microwave beam profile across
the beam can be ignored in this case. In case of the nonlinear
wave-particle interaction, the influence of the absorption on
the beam profile can be significant(see the discussion in Sec.
VIII of Ref. 1). However, this influence will be ignored in
the present study where wave absorption will be taken into
account only in the total power conservation law(12) assum-
ing that the results are qualitatively valid. In this context, Eq.
(15) will be used as a definition of the absorption coefficient
through the absorbed power calculated by the kinetic Monte
Carlo code ECNL for a given value of the beam amplitude.
Since sucha is a nonlinear function of the beam amplitude,
the computation of both the beam amplitude and absorbed
power profiles over magnetic surfaces is performed by itera-
tions until these profiles become consistent with each other.

III. KINETIC MODEL

A. Integral equation for the phase space flux density

For the computation of absorbed microwave power and
generated current, the electron distribution functionf is mod-
eled using a Monte Carlo method. For this modeling, a toka-
mak with circular concentric magnetic surfaces is assumed.
Test particles representing electrons are followed on the
magnetic surfaces using a conventional Monte Carlo proce-
dure. Whenever they are crossing the beam, their perpen-
dicular velocity is randomly changed by a finite amount ac-
cording to the nonlinear wave-particle interaction model of
Ref. 1. The spatial regions where each of these models is
used is separated by two poloidal cuts,A andB, located close
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to each other(see Fig. 1). In the small inner region which
contains the cross section of the beam with the magnetic
surface, the kinetic equation is simplified to a Vlasov equa-
tion ignoring the Coulomb collision integral. In addition, the
effect of the magnetic field inhomogeneity on electron orbits
is neglected in this region. Namely, it is assumed that an
electron entering this region through the pointsX,ud on one
of the cuts moves in the uniform magnetic fieldB0 where
B0=Bsr md is the value of the tokamak main magnetic field at
the pointr m=r msX,ud in the inner region where the electron
passes through the given wave electric field maximum on its
orbit. Introducing the local Cartesian coordinate system with
the z-axis directed alongB0 and thex-axis directed along
k'= uh=ssr ,td−f=ssr ,td ·B0/B0gB0/B0jut=t0

, the microwave
electric field is transformed to

Ẽ = E0 Ref expFisk'x + kiz− vtd −
z2

2Li
2G , s16d

with the constantski= uf=ssr ,td ·B0/B0gut=t0
, f = fst0d,

E0 = Ast0dexpf− fsr m,t0dg = Ast0dexpS−
r2su − u0d2

2L'
2 D ,

s17d

where t0 is the reference ray parameter at the intersection
point with the magnetic surface andu0 is the poloidal coor-
dinate of this point. Here the quadratic terms in the expan-
sion of the real phases around the reference ray have been
neglected assuming the curvature of the phase front to be
small. Moreover, both, parallel and perpendicular beam-
widths Li and L', which are defined by quadratic terms in
the series expansion of the complex phasef around the ref-
erence ray, have been replaced by their geometrical mean.

For the case of second harmonicX-mode propagation,
the problem of electron motion in the uniform magnetic field

and the Gaussian microwave beam(16) has been reduced in
Ref. 1 to a one-dimensional problem described by the Hamil-
tonian

Ĥ = Vw − 1
2w2 + «we−t2

cosc, s18d

where the dimensionless parameters are

« =
Î2Liuk'eE0

uvium0v
ufx − i f yu,

V =
Î2Li

uviu
Fkivi − 2vc0S1 −

vi
2

2c2D − vG . s19d

The independent variables here are the dimensionless reso-
nant perpendicular action, the wave-particle phase and the
dimensionless time given by

w =
Î2Liuvc0uv'

2

uviuc2 , c = 2fg + skivi − vdt + cc, t =
uviut
Î2Li

,

s20d

respectively. Here,e, m0, v', vi, fg, andcc are the electron
charge, the rest mass, the perpendicular and the parallel ve-
locity, the gyrophase, and the constant phase shift, respec-
tively, andvc0=eB0/ sm0cd,0 is the nonrelativistic electron
cyclotron frequency. The change of the parallel velocity of
electrons is negligibly small in the inner region.1

Using the fact that particles entering the inner region
have a random distribution over the phasecc, the solution to
the Vlasov equation obtained with the help of the method of
characteristics can be transformed to an integral relation be-
tween the gyroaveraged pseudoscalar flux densities of elec-
trons entering the beamGin and of electrons leaving the
beam,Gout (see Ref. 1),

GoutsX,u,v',vid =E
0

`

dv'8 PHsv',v'8 dGinsX,u,v'8 ,vid.

s21d

Here, the incoming flux density,

Gin =
JuVi

wu
2p

E
−p

p

dfgf =
DN

2pDXDuDv'DviDt
, s22d

where

J = Îgv', Vi
w = vi

Bw

B
, Bw = B · = w s23d

are the Jacobian of phase space coordinates and the contra-
variant toroidal component of the parallel velocity, respec-
tively, is calculated on cutA for particles withvi .0 and on
cut B for particles withvi ,0. Here,Gin is also expressed
through the number of electrons passing through the element
of the cutDXDu in the velocity rangeDv'Dvi per time in-
terval Dt (see also Ref. 5). In the definition of the outgoing
flux densityGout cutsA andB should be swapped. The tran-
sition probability density(TPD) PH, which describes the
change of the perpendicular velocity of electrons due to their
nonlinear interaction with the microwave beam, is

FIG. 1. Schematic location of the poloidal cutsA andB. The crossing of the
cold cyclotron resonance linev=2uvc0u, with the magnetic field line(dashed
curve) locates the resonance zone.
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PHsv',v'8 d =
]w

]v'

]v'8

]w8
PAB

D sw,w8d =
v'

v'8
PAB

D sw,w8d, s24d

wherew=wsv'd and w8=wsv'8 d are given by Eq.(20) and
the discretized TPDPAB

D is given by Eq.(60) of Ref. 1. In the
following, the relation(21) will used also in the symbolic
operator form,

Gout = P̂HGin. s25d

The dependencies of the discretized TPDPAB
D on parallel

velocity, beam and magnetic field parameters enter this func-
tion only through the dimensionless parameters« andV [Eq.
(19)]. Therefore, for the purpose of Monte Carlo modeling,
this quantity has been precalculated in the whole parameter
range except in the regions where the nonlinearity parameter,

eNL = Î«V <
vLi

c
ÎN'E0

2B0

v'

uviu
s26d

is very small(there the quasilinear approximation is used) or
very large (there the adiabatic model is used), see Ref. 1.
HereN'=ck' /v,1 is the perpendicular refraction index.

In the outer region(which is the region delimited by the
cutsA andB and not containing the cross section of the beam
with the magnetic surface) the amplitude of the beam is ex-
ponentially small and, therefore, the wave electromagnetic
field is neglected there. Moreover, the tokamak geometry is
simplified for the modeling of the distribution function in
this region. Namely, in a computation with a givenX value in
Eq. (12) the magnetic surfaces are assumed to be circular and
concentric around the magnetic axis located atR=Rs;R0

−DfrsXdg wherersXd is the solution to Eq.(14). The small
radius of quasitoroidal coordinatessr ,q ,wd associated with
this axis, coincides withrsXd on the considered surface, but
differs from r on the nearby surfaces labeled withX8 so that
X8=Rs−r=X−rsXd+r. Thus, the Jacobian of coordinates
sX,u ,wd coincides with the Jacobian of quasitoroidal coordi-
nates,Îg=rR=rsRs+r cosqd, on the reference rayq=p.
The cross-field transport, the momentum conservation during
collisions, and the toroidal inhomogeneity of the magnetic
field are ignored in the outer region defined above. The ki-
netic equation corresponding to this model has the form

]f

]t
+

vi

qRs

]f

]q
+

vi

Rs

]f

]w
= L̂CMf . s27d

Here, L̂CM is the Coulomb collision operator for isotropic
Maxwellian background particles andq is the safety factor.
In steady state, the formal solution to Eq.(27) can, again, be
expressed through the relation betweenGout andGin,

Gin = P̂OGout, s28d

which explicitly reads

GinsX,q,v',vid

=E
−p

p

dq8E
0

`

dv'8 E
−`

`

dvi8P
Osq,v',vi;q8,v'8 ,vi8d

3GoutsX,q8,v'8 ,vi8d, s29d

where

POsq,v',vi;q8,v'8 ,vi8d = Ptsv',vi;v'8 ,vi8dfdsq − q8

− 2p/qdQsvi8d + dsq − q8

+ 2p/qdQs− vi8dg

+ Prsv',vi;v'8 ,vi8ddsq − q8d.

s30d

Here Ptsv' ,vi ;v'8 ,vi8d is the transition probability density
from the velocity space pointv'8 ,vi8 to the pointv' ,vi in the
case that the particle traverses the outer region,vi8vi .0,
Prsv' ,vi ;v'8 ,vi8d is such a TPD in the case that the particle
returns to the starting cut,vi8vi ,0 andQ is the Heaviside
step function. Combined together, relations(25) and (28)
provide a homogeneous integral equation for the flux density

Gout = P̂HP̂OGout. s31d

It should be noted that for midplane heating scenarii
with the resonance zone located on the high field side, the
effect of toroidicity in the outer region does not have a sig-
nificant influence on the distribution function in the reso-
nance zone located in the passing particle region of the ve-
locity space. However, this effect as well as the momentum
conservation during Coulomb collisions is important for the
generated current. The procedure taking these effects into
account in the computation of the current is described in Sec.
III C.

B. Monte Carlo algorithm

The formal solution to Eq.(31) is

Gout = lim
K→`

1

Ko
k=1

K

sP̂HP̂OdkF, s32d

where a particular choice forF is F=CndsX−X0ddsq
−q0ddsv'−v'0ddsvi−vi0d andCn is a normalization constant
(F can be an arbitrary integrable function of phase space
variables). This formal solution can be presented as an ex-
pectation value of the test particle density on the cut aver-
aged over the Markov chain,

GoutsX,q,v',vid

= CndsX − X0d lim
K→`

1

K

3o
k=1

K

dsq − qk
outddsv' − v'k

outddsvi − vik
outd, s33d

where the chain is determined by the following recurrence
relations(the variable X remains unchanged),
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qk
out = qk

in, qk
in = qk−1

out +
2p

q
sgnsvik

indQsvik
invik−1

out d, s34d

v'k
out = V'

Hsqk
in,v'k

in ,vik
ind, v'k

in = V'
Osv'k−1

out ,vik−1
out d, s35d

vik
out = vik

in, vik
in = Vi

Osv'k−1
out ,vik−1

out d, s36d

and the initial conditionq0
in=q0, v'0

in =v'0, vi0
in =vi0. Here,

the superscripts “in” and “out” on the variables indicate the
incoming and outgoing flux regions, respectively, andV'

H ,
V'

O, and Vi
O are random numbers defined by the following

expectation values:

dsv' − V'
Hsq,v'8 ,vidd = PHsv',v'8 d, s37d

dsv' − V'
Osv'8 ,vi8dddsvi − Vi

Osv'8 ,vi8dd

= Ptsv',vi;v'8 ,vi8dQsvivi8d + Prsv',vi;v'8 ,vi8dQs− vivi8d.

s38d

The small change ofq due to the rotational transform in the
inner region is ignored in Eq.(34). The sampling of
V'

Hsq ,v'8 ,vid using the known TPDPHsv' ,v'8 d is standard

(see, e.g., Ref. 6). As for V'
Osv'8 ,vi8d and Vi

Osv'8 ,vi8d, these
quantities are obtained using a conventional Monte Carlo
procedure for solving the drift-kinetic equation.7 Starting the
orbit of a test particle with the velocitiessv'8 ,vi8d in the out-
going flux region of the respective cut and following its ran-
dom walk until it hits one of the cuts at a location in the
incoming flux region,V'

Osv'8 ,vi8d and Vi
Osv'8 ,vi8d are ob-

tained as the values ofv' andvi at the hit point, respectively.
It should be noted that, due to a simplified tokamak geom-
etry, the conventional Monte Carlo method7 requires only a
few steps per sampling of these quantities in the long mean
free path regime. The case of a realistic geometry will be
considered in future using the technique of Ref. 5 which has
similar efficiency.

The limit of zero toroidicity,r /Rs→0, used in the tran-
sition probabilities(38) will not be used for the derivations
presented in the following, where the final formulas are in-
dependent of toroidicity.

The normalization constantCn in Eq. (33) is determined
by the expression for the particle densityn averaged over the
volume between two close magnetic surfaces(such averages
are referred as flux surface averages in the following),

nesXd ;
1

4p2DXSE−p

p

dqÎgD−1E
X−DX/2

X+DX/2

dX8E
−p

p

dqE
−p

p

dwÎgnsX8,q,wd

=
1

2prRsDX
E

X−DX/2

X+DX/2

dX8E
−p

p

dqE
0

`

dv'E
−`

`

dviG
outsX8,q,v',vidDtsv',vid, s39d

whereDtsv' ,vid is the average time it takes for a particle
leaving the region of the beam with the velocitysv' ,vid to
reenter this region. The sample of this quantityDtk is ob-
tained as a by-product when samplingv'k+1

in andvik+1
in within

a conventional random walk procedure. Substituting Eq.(33)
in Eq. (39) and replacing thereDtsv'k

out,vik
outd with Dtk, one

obtains

ne =
Cn

2prRsDX
lim
K→`

1

Ko
k=1

K

Dtk. s40d

ECRH power absorption can be characterized by the total
absorbed power density in the layer between two close mag-
netic surfaces[see Eq.(12)]. It is given by the difference
between the incoming and the outgoing kinetic energy fluxes
within the layer,

dPbsXd
dX

=
2p

DX
E

X−DX/2

X+DX/2

dX8E
−p

p

dqE
0

`

dv'E
−`

`

dvi

3 fGinsX8,q,v',vid − GoutsX8,q,v',vidg
m0v

2

2
.

s41d

Substituting in Eq.(41) the expression for the outgoing flux

density(33) and also the following expression for the incom-
ing flux density,

GinsX,q,v',vid

= CndsX − X0d lim
K→`

1

K

3o
k=1

K

dsq − qk
inddsv' − v'k

in ddsvi − vik
ind, s42d

one obtains with the account of Eq.(40)

dPbsXd
dX

= 2p2rRsm0ne lim
K→`

3So
k=1

K

DtkD−1

o
k=1

K

fsv'k
in d2 − sv'k

outd2g. s43d

It should be noted that essential contributions to the second
sum in Eq. (43) come only when the test particle passes
through the resonance zone which is very narrow both in
coordinate space, where it is limited by the beam region, and
in velocity space. Moreover, the location of this resonance
zone in velocity space is usually in the high energy region
scarcely visited by test particles. Therefore, the variance in
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the absorbed power would be very large if one would di-
rectly use the simple Monte Carlo procedure described here.
Hence, this procedure has been complemented by a weight
windows technique based on a splitting-roulette algorithm
and has been applied, in particular, in Ref. 8 for the compu-
tation of high energy “tails” of the minority ion distribution
function during ion cyclotron heating.

C. Green’s function method for the current density

The parallel current density,

j i =
e

rRDX
E

X−DX/2

X+DX/2

dX8E
−p

p

dqE
0

`

dv'

3E
−`

`

dvi sgnsvidGoutsX8,q,v',vid
BsX8,qd
BwsX8,qd

, s44d

can also be computed in a straightforward way,

j i = 2pene
Rs

R
lim
K→`

So
k=1

K

DtkD−1

o
k=1

K

sgnsvik
outd

BsX,qk
outd

BwsX,qk
outd

,

s45d

where it has been used thatj i /B is constant on the magnetic
surface. However, such a method gives a large relative vari-
ance in the result as compared to such a variance in the
absorbed power density. This large variance comes from tak-
ing into account in the expression for the current the com-
plete distribution function where the current generated by
particles withvi .0 is almost compensated by the current
generated by particles withvi ,0. Since both these large
contributions have statistical errors, the resulting current is
strongly polluted by statistical noise. Much better results are
obtained using a precomputed current drive efficiency which
also allows to take into account the toroidal magnetic field
inhomogeneity and momentum conservation during Cou-
lomb collisions of nonresonant bulk electrons determining
the current.

For this purpose, the kinetic equation is rewritten in
guiding center variablesz=zsr ,pd=sx ,v' ,vid andfg where
x are some curvilinear spatial coordinates of the guiding cen-
ter beingsX,q ,wd in this case,

]f

]t
+ Vi ]f

]zi − vc
]f

]fg
− L̂Cf = QH, s46d

QH ; − eSẼ +
1

c
v 3 B̃D ·

]zi

]p

]f

]zi , s47d

whereVi = żi are equations of guiding center motion,v andp
are the particle velocity and the kinematic momentum, re-

spectively, andB̃ is the wave magnetic field. AssumingQH to
be known, neglecting the contribution of the cross-field drift
in Vi, linearizing the collision integral and averaging Eq.(46)
over time and gyrophase one obtains a stationary drift-
kinetic equation with a source term,

Vi
i ]f

]zi − L̂CLf = kkQHltlfg
. s48d

The linearization of the collision integral here is justified
because the distribution function can strongly differ from the
Maxwellian only in the resonance zone and in the high en-
ergy region of the velocity space. The amount of electrons in
these regions is small. Therefore, the contribution of these
electrons to the Coulomb diffusion coefficients which are
integral moments off can be treated as a linear perturbation.
The solution of Eq.(48) in terms of Green’s function gives
for the current the following expression(compare to Ref. 9):

j i

B
E d3xÎgB=E d3xÎgji = 2peE d5zJvif

= 2peE d5zJGkkQHltlfg
, s49d

where the following short notation has been introduced for
the integrals,

E d3x ; E
X−DX/2

X+DX/2

dX8E
−p

p

dqE
−p

p

dw,

E d5z;E d3xE
0

`

dv'E
−`

`

dvi. s50d

In Eq. (49), GsX,q ,v' ,vid is the generalized Spitzer–Härm
function which satisfies the adjoint kinetic equation

Vi
i ]

]zi GfM + L̂CLGfM = − vifM , s51d

where fM is a Maxwellian. Since the wave electromagnetic
field in the source term(47) is negligible in the outer region,
the integration overw in the last expression in Eq.(50) can
be reduced to the inner region. In this inner region the colli-
sion integral can be ignored in Eq.(46) when expressingf in
Eq. (47) through its value on the boundary(w=wA for cut A
or w=wB for cut B). For this purpose, the solution of the
Vlasov equation resulting from Eq.(46) using the method of
characteristics has been used in Ref. 1. Ignoring in this Vla-
sov equation the cross-field drift, replacing the poloidal vari-
able q with the field aligned variableu=q+sw−wAd /q and
the velocity space variablesv' and vi with the integrals of
drift motion m=v'

2 /2B andE=sv'
2 +vi

2d /2 and rewriting it in
the form of a conservation law, after time and gyrophase
averaging, the source term is expressed as

kkQHltlfg
=

1

J8

]

]w
J8Vi

w 1

2p
E

−p

p

dfgkflt, s52d

where J8=JB/ sv'uviud. Substituting Eq.(52) in Eq. (50),
where the integration variables have also to be swapped, per-
forming the integration overw between the cuts and ignoring
the small variation ofG along the drift orbit(with w vari-
able) caused by collisions in favor of the variation off, one
obtains
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j i = eBSDXE
−p

p

dqÎgBD−1E
X−DX/2

X+DX/2

dX8E
−p

p

dq

3E
0

`

dv'E
−`

`

dviGsX8,q,v',vidfGoutsX8,q,v',vid

− GinsX8,q,v',vidg. s53d

Here, the variables have been swapped back after the inte-
gration overw and the definition of flux densities(22) has
been used. In analogy with Eq.(41), the current density can
be expressed in terms of Markov chain variables,

j i = ene
B

Ba
lim
K→`

So
k=1

K

DtkD−1

3o
k=1

K

fGsX,qk
out,v'k

out,vik
outd − GsX,qk

in,v'k
in ,vik

indg, s54d

where

1

Ba
=

1

2p
E

−p

p dq

B
. s55d

In the following, the flux surface average ofj i obtained by
putting in Eq.(53) B=Ba will be used. The functionG has
been precomputed for the long mean free path regime using
the method of Ref. 10 and has been used in Monte Carlo
calculations in the form of interpolation. This allowed to
reduce the relative variance in the current to the level of such
a variance in the absorbed power.

IV. RESULTS OF THE MODELING

A. Midplane off-axis ECRH and ECCD

The modeling with the TORBEAM-ECNL combination
of codes has been performed for beam and plasma param-
eters in the range of interest at ASDEX upgrade. Plasma
major and minor radii, the magnetic field strength on the
axis, central and edge values of the electron density, the tem-
perature, and the safety factor profiles[see Eqs.(2)–(4)] are
a=65 cm, R0=165 cm, Baxis=2.1 T, n0=631013 cm−3, n1

=1012 cm−3, T0=2.4 keV, T1=0.24 keV, q0=1, and q1=4,
respectively. The wave frequencyv /2p=140 Ghz corre-
sponds to the second harmonic resonance located at the high
field side, 1økesrdø1.5, −10 cmøDsrdø5 cm. The input
power is P=0.5 MW. The case of low field side launch in
the midplane is considered. The initial width of the micro-
wave beam 2.97 cm and the initial focusing 1/Rf

=1/129.4 cm results in an average beamwidth in the absorp-
tion zone ofsLiL'd1/2=3 cm. Two specific toroidal launching
angles,finj =0° andfinj =−10° (this leads to 70° angle be-
tween the magnetic field and group velocity in the absorption
region, see Fig. 1) has been chosen for the investigations.

In the first case, as in the earlier computations for the
Wendelstein 7-AS stellarator(W7-AS) parameters,1 nonlin-
ear effects reduce the absorption coefficient significantly,
leading to the broadening and radial shift of the absorbed
power density profile(see Fig. 2). At the same time, nonlin-
ear effects are not significant in the second case for the nor-

mally focused beam(see Fig. 3). Moreover, the effects of
plateau formation are also not important for this off-axis
ECCD scenario. However, the linear model stays here right
on the margin of the applicability region. This can be seen
from Fig. 4 where the nonlinearity parameter(26) averaged
with the exchanged power density in velocity space,

eNL ; lim
K→`

So
k=1

K

usv'k
in d2 − sv'k

outd2uD−1

3o
k=1

K

eNLsqk
in,v'k

in ,vik
indusv'k

in d2 − sv'k
outd2u s56d

is shown together with the surface averaged absorbed power
density as a function of the relative parallel beamwidth
Li /Li0 in the point of maximum linear absorption. For thisLi

scan, the power in the beam in the maximum point of ab-
sorption is kept unchanged and equal to 500 kW. With in-
creasing Li /Li0 the nonlinear reduction of the absorbed
power causes a reduction in the local current density(see
Fig. 3), while, as far as the beam does not get too narrow
such that the parallel spectral width becomes comparable
with ki, the magnitude ofLi /Li0 has no effect on the linear
calculation, where an instantaneous redistribution of the ab-
sorbed power along the field lines is assumed. The total

FIG. 2. Absorption coefficienta and surface averaged absorbed power den-
sity pabs as functions of the dimensionless radiusr /a for the case of perpen-
dicular launch. Solid—nonlinear model, dashed—linear model. The “cold”
resonancev=2uvc0u is located atr /a=0.503.
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value of the current is also reduced due to the shift of the
absorption profile towards the cold resonance zone where the
local current drive efficiency defined as a ratio of surface
averaged current and absorbed power densitiesh= j i /pabs is
smaller. The change ofh from the linear value is not large in
all cases(see Fig. 5).

B. ECCD near rational magnetic surfaces

Changing in the ASDEX upgrade parameter set of Sec.
IV A Baxis and T0 to 2.157 T and 5 keV, respectively, the
power deposition profile for the launching anglefinj =−10°
is centered around the low order rational magnetic surface
with q=3/2. Thesame localization is retained in case where
n0 is reduced by a factor of 6,T0 is increased by a factor of
3, andBaxis is increased toBaxis=2.19 T so that the effects of

FIG. 3. Surface averaged absorbed power densitypabs, surface averaged
parallel current densityj i, and total driven currentI as functions of the
dimensionless radiusr /a for the toroidal injection anglefinj =−10°. The
position of cold resonancev=2uvc0u is shown with solid vertical line. Indi-
cations 13BW and 33BW correspond to the nonlinear model with normal
parallel beam widthLi andLi increased three times keeping the same input
power in the beam, respectively.

FIG. 4. Dependencies ofpabs for the nonlinear and linear models(top) and
average nonlinearity parameter(56) eNL (bottom) on the relative parallel
beam widthLi /Li0 whereLi0 is a beam width given by TORBEAM.

FIG. 5. Current drive efficiencyh for cases shown in Fig. 3.
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the formation of the plateau on the distribution function and
the consequent quasilinear degradation of absorption and
current drive become significant. In both these cases shown
in Figs. 6 and 7, the reduction of the absorbed power density
pabs and of the generated current densityj i can be seen
around a rational magnetic surface in the region whereq
satisfies the inequality

Uq −
M

N
U ø Dqcr =

qLi

2prN
. s57d

Boundaries of this region where the field line can reenter the
beam at least once afterM =3 toroidal revolutions are shown
in these figures with dashed-dotted vertical lines. In the sec-
ond case, the quasilinear degradation of absorption and cur-
rent drive can be seen also on irrational magnetic surfaces.
The reduction of the absorption can be clarified considering
the distribution function on two magnetic surfaces whose
positions are shown with short solid vertical lines in Fig.
7(a). Comparing the distribution function at two different
spatial points of the magnetic surface within the region(57)
on cutA (incoming flux region), namely, in the region of the
beamq=p and away from the beamq<3p /2 one can ob-
serve a much more distinct plateau onf at the pointq=p
where electrons return to the beam afterM turns(see Fig. 8).

This is better seen in Fig. 9 where the distribution function is
shown as a function of the perpendicular velocity for a fixed
value of the parallel velocity(distributions along dashed
lines in Fig. 8). In this figure, the distributions forq=p on
the other side of the beam where resonant electrons are leav-
ing it are also shown.

The poloidal asymmetry off can also be seen on the
magnetic surface located outside the region(57) (Fig. 10).
Such an asymmetry comes from the fact that the relaxation
time of the distribution function in velocity space remains
comparable with the relaxation time over the magnetic sur-
face even in the extreme long mean free path regime. The
first of these mentioned relaxation times is the Coulomb dif-
fusion time across the resonance zone in velocity spacetrc.
The width of this zone is determined either by the broaden-
ing of the cyclotron resonance line due to the spectral width
of the beam, or by the broadening due to nonlinear effects
Dv',maxfc2vi / svLiv'd ,csE0/B0d1/2!v'g. Thus, trc

=Dv'
2 / sncv2d wherenc is a collision frequency. The relax-

ation time over the irrational magnetic surface is roughly a
return time to the beamtrms=4p2R0r / sL'vid, which is larger
than the toroidal bounce time by a factor 2pr /L'@1. These
times appear to be comparable in the considered “extreme”
case (with Dv' /v,0.1, ne,23103 s−1, v,6
3109 cm s−1, and r =26 cm one hastrc,5310−6 s and
trms,10−5 s), while in more realistic cases the first of them

FIG. 6. Surface averaged absorbed power densitypabs (a) and surface aver-
aged parallel current densityj i (b) as functions of the dimensionless radius
r /a for the nonlinear and linear models. Cold resonance position and bound-
aries of region(57) are shown with solid and dashed-dotted vertical lines,
respectively.

FIG. 7. The same as Fig. 6 for the extreme long mean free path regime(cf.
Sec. IV B).
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is smaller. Therefore, the electron distribution function is es-
sentially a four-dimensional function on magnetic surfaces in
case of off-axis heating scenarii.

As it is known,11 the stability of the tearing mode can be
influenced using ECCD around rational magnetic surfaces
because modifications of current around these surfaces
modify the value of the tearing mode stability indexD8. The
presence of a relatively small dip on the ECCD current pro-
file exactly at the rational surface is able to change the situ-
ation dramatically. Calculations ofD8 in the cylindrical ap-
proximation of the tokamak with the toroidal current taken as
a sum of the Ohmic current corresponding to theq profile (4)
and ECCD currents shown in Fig. 6(b) give for the stability
index without ECCD D8=−0.055 cm−1. With co- and
counter-ECCD calculated using the linear absorption model
(no dip), D8=−3.3 cm−1, andD8=1.9 cm−1, respectively. At

the same time, the current profile with a dip given by the
nonlinear model results inD8=5.1 cm−1 and D8=−1 cm−1

for co- and counter-ECCD, respectively, i.e., the sign ofD8 is
changed to the opposite, as compared to the linear model.

V. DISCUSSION AND CONCLUSIONS

The modeling of off-axis midplane ECRH and ECCD in
a tokamak has been performed with taking into account the
effects of nonlinear wave-particle interaction and the inho-
mogeneity of the electron distribution function on the mag-
netic surface, but neglecting the radial transport of electrons.
For this purpose, a kinetic Monte Carlo code ECNL has been
developed and coupled with the beam tracing code TOR-
BEAM. The Green’s function method applied in ECNL for
the calculations of ECCD current allowed to take into ac-

FIG. 8. Contour lines of the electron distribution function on entry of the
beam for the magnetic surface within the region(57) for q=p (a) and q
<3p /2 (b). The thick half circular line is the cyclotron resonance linev
=kivi−2vc0f1−v2/ s2c2dg. Stronger quasilinear effect in the beam region is
observable through the stronger distorsion of contours on plot(a) around the
resonance line as compared to plot(b).

FIG. 9. Electron distribution function over perpendicular velocities on the
magnetic surface within the region(57) r /a=0.411. The corresponding
value ofvi /vth=1 is shown in Fig. 8 with dashed-dotted line. Line with no
markers—distribution on entry of the beam atq=p, diamonds—q=p on
exit of the beam, circles—q<3p /2 (region with no beam). The distribution
of electrons which enter the beam(entry) exhibits a much more pronounced
plateau around the resonance zone forq=p as compared toq<3p /2 (see
also Fig. 8). The distribution on the other side of the beam(Exit) where
resonant electron are leaving is the most perturbed.

FIG. 10. The same as in Fig. 9 for the magnetic surface located outside the
region (57) r /a=0.419. The difference in distributions on entry(poloidal
asymmetry) is due to the fact that relaxation times in velocity space and over
the magnetic surface are comparable.
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count momentum conservation and toroidicity in the case of
a simple test particle dynamics. In addition, it reduces the
statistical errors in the current to the levels of such an error in
the absorbed power.

Within the Monte Carlo model, a few approximations
have been made. In particular, Coulomb collisions have been
ignored in the inner region. Their effect on the wave-particle
interaction can be estimated using the decorrelation function
dF introduced in Ref. 12 and in its relativistic form in Ref.
13. This function is proportional to the variance in the wave-
particle phase during the interaction time. Using the estimate

dF ,
nc

v

v
c
SLi

v

c
D3

, s58d

for the parameter valuesnc=43104 s−1, Li=3 cm,v /c=0.1,
andv<8.1011 s−1, one obtainsdF,10−3. Therefore, the ef-
fect of collisions on wave-particle interaction is negligibly
small. However, for very wide beamsLi ù30 cm this effect
would become increasingly important. The influence of
cross-field transport on the deformation of the distribution
function in the resonance zone has also been neglected be-
cause it is small compared to the effect of Coulomb colli-
sions. For the estimate, relating the change of the cyclotron
resonance condition,

v − 2vc0S1 +
v2

c2D − kivi = 0, s59d

due to radial diffusion affectingvc0 to its change
due to collisional diffusion, one obtains
sncR0

2/D'd−1/2/maxsv2/c2,Niv /cd, which is typically smaller
than one. HereD' is the radial diffusion coefficient. The
effect of plasma rotation, which has also been neglected in
the model, is small as long as the plateau establishment time
trc is small compared to the time needed for a toroidal
plasma displacement by one beamwidthtw=Li /VEw, where
VEw,qR0vT

2 / sa2vc0d. In the considered cases,trc /tw,0.1.
In addition, toroidal trapping of electrons does not play a
decisive role in the process of plateau formation in ECCD
scenarii with midplane heating in the case of a resonance
zone location on the high field side which is of interest here.

The modeling for ASDEX upgrade parameters shows
that the reduction of the absorption coefficient and the broad-
ening of the absorbed power density profile due to nonlinear
effects is significant for heating scenarii with injection angles
close to perpendicular. At the same time, in the ECCD sce-
nario with a well focused beamsLi=3 cmd both nonlinear
effects and the quasilinear distortion of the distribution func-
tion are not significant. However, when increasing the micro-
wave beam size by a factor 3 in the parallel direction while
keeping the same input power in the beam, nonlinear effects
become important. They reduce the absorption coefficient
and shift the power deposition profile towards the region
with lower current drive efficiency. Therefore, nonlinear ef-
fects could be observed from the total value of ECCD cur-
rent which is reduced for such a defocused beam.

It should be mentioned that nonlinear reduction of the
absorption of perpendicularly injected microwave beams has
been observed on the W7-AS stellarator.14 In these experi-

ments an increase in the power transmitted after a single pass
of the beam through a low density plasma has been measured
as compared to the predictions of linear theory. At the same
time, detailed measurements of the ECCD efficiency on the
DIII-D tokamak,15 a device of the same scale as ASDEX
upgrade, show a good agreement of these measurements with
the predictions of linear and quasilinear theory.

Note that the onset of nonlinear effects is linked more
with an increase of the microwave beam cross section rather
than with an increased power in the beam. This can be seen
from the nonlinearity parametereNL, Eq. (26), which weakly
scales with power asP1/4 while its scaling with the beam-
width is Li

3/4L'
−1/4. The positive scaling withLi is due to the

fact that for largerLi the increase in the electron interaction
time with the beam prevails over the reduction of the wave
amplitude and leads, as a result, to a larger nonlinear shift of
the wave-particle phase. The scaling with the pitch angle
eNL, tanx indicates that nonlinear effects are less significant
if the main power absorption is done by strongly passing
particles. In present day experiments with well focused
beamseNLø1 for tanx=1. At the same time, in ECCD sce-
narii, particles with tanx,1 play the main role in the ab-
sorption, especially ifbe is high. Linear and quasilinear
theory are well applicable in this velocity space region, what,
in particular, has been confirmed for DIII-D parameters by
direct computations of electron orbits in the wave electro-
magnetic field in Ref. 16. However, in a reactor-scale device,
this velocity space region will shrink due to increased
eNL.1 at tanx=1 owing to larger beam widths, larger main
magnetic fieldseNL,B0

1/2d and higher power in the beam.
In the vicinity of low order rational magnetic surfaces,

the quasilinear effect becomes important. It leads to the for-
mation of a plateau on the electron distribution function and
a consequent reduction of power absorption and generated
current there. As a result, current profiles with a dip on the
rational surface are created. The presence of such a dip can
change the sign of the tearing mode stability indexD8 to the
opposite as compared to the profile following from linear
theory which is without a dip. Hence cocurrent drive be-
comes destabilizing and countercurrent drive becomes stabi-
lizing. This conclusion, however, shows only the tendency in
the considered parameter range because the effect of the
cross-field radial transport of current-carrying electrons is
not taken into account in the computation. Roughly, radial
transport would smear the current over the radial scaledr
,sD' /ncsd1/2 wherencs is the collision frequency for supra-
thermal resonant electrons. The process of radial relaxation
of current carriers occurs on a much longer time scale(of the
order of the current destruction time) than the process of
plateau formation which takes place on a time scale of the
order of collisional diffusion time across the narrow reso-
nance zone in velocity space. Estimatingncs,23104 s−1

andD',104 cm2s−1 one obtainsdr ,0.7 cm which is com-
parable with 0.8 cm being the half-width of the region(57)
containing the dip on the current profile(see Figs. 6 and 7).
Though, such an estimate might use too large values of
anomalousD'. The formation of transport barriers around
low order rational magnetic surfaces in ECRH heated plas-
mas on the Rijnhuizen Tokamak Project17 (RTP) suggests
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lower values of anomalous transport there. In particular, as
shown in Ref. 18, the anomalous transport caused by a small
scale magnetic perturbations can be strongly reduced around
low order rational magnetic surfaces. As shown above, the
radial transport is not important for the plateau formation.
Therefore, the toroidal asymmetry of the distribution func-
tion and, respectively, of the electron cyclotron emission
would not be affected by the cross-field transport. Note that
incomplete relaxation of the distribution function over near-
rational magnetic surfaces has been considered in Ref. 19 as
one of the possible reasons for the toroidal asymmetry of
electron cyclotron emission in ECRH experiments on RTP.
At the same time, practically interesting cases where the ef-
fect of the reduction of ECCD current near rational surfaces
can influence the tearing mode stability index are still to be
found. The possible existence of such cases could provide a
method for NTM stabilization which does not need an active
control of the ECCD current profile. Indeed, if a rather broad
radial profile of the ECCD current is created, it can cover the
whole region where the low order rational surface is ex-
pected and the dip on the current profile is automatically
formed around this surface, thus preventing the growth of
NTMs up to large saturation levels. As shown experimentally
in Ref. 20 where the ECCD cocurrent was created before the
mode onset at the radial position where the NTM was ex-
pected, preventing the NTM at the initial stage needs less
ECCD power than stabilizing a developed NTM. The effi-
ciency of such a method depends on the accuracy of the
ECCD current profile placement to a resonant magnetic sur-
face. Therefore, possible automatic profile placement would
be of interest.

ACKNOWLEDGMENTS

This work was carried out within the Association
EURATOM-ÖAW, under Contract No. P16157-N08 with the
Austrian Science Foundation and also with funding from the
Friedrich Schiedel Stiftung für Energietechnik. The content

of the publication is the sole responsibility of its authors and
it does not necessarily represent the views of the Commis-
sion or its services.

1R. Kamendje, S. V. Kasilov, W. Kernbichler, and M. F. Heyn, Phys.
Plasmas10, 75 (2003).

2R. O. Dendy, Plasma Phys. Controlled Fusion27, 1243(1985).
3E. Poli, A. G. Peeters, and G. V. Pereverzev, Comput. Phys. Commun.

136, 90 (2001).
4F. Leuterer, M. Beckmann, and H. Brinkschulte, Fusion Eng. Des.53, 485
(2001).

5S. V. Kasilov, W. Kernbichler, V. V. Nemov, and M. F. Heyn, Phys.
Plasmas9, 3508(2002).

6M. H. Kalos and P. A. Whitlock,Monte Carlo Methods. Volume I: Basics
(Wiley, New York, 1986).

7A. H. Boozer and G. Kuo-Petravic, Phys. Fluids24, 851 (1981).
8S. V. Kasilov, V. E. Moiseenko, M. F. Heyn, and W. Kernbichler, in12th
Topical Conference on Radio Frequency Power in Plasmas, Savannah,
Georgia, 1997, AIP Conf. Proc. No. 403(AIP, Woodbury, NY, 1997), pp.
321–324.

9T. Antonsen and K. Chu, Phys. Fluids25, 1295(1982).
10S. V. Kasilov and W. Kernbichler, Phys. Plasmas3, 4115(1996).
11E. Westerhof, Nucl. Fusion27, 1929(1987).
12S. V. Kasilov, A. I. Pyatak, and K. N. Stepanov, inReviews of Plasma

Physics, edited by B. B. Kadomtsev(Consultants Bureau, New York,
1997), Vol. 20.

13S. V. Kasilov, in Proceedings of the Seventh European Fusion Theory
Conference, edited by A. Rogister(Forshungszentrum Jülich GmbH,
Jülich, Germany, 1998), pp. 111–114.

14H. P. Laqua, V. Erckmann, W7-AS Team, and ECRH-Group, in31st EPS
Conference on Plasma Physics, London, 28 June–2 July(EPS, Petit-
Lancy, 2004), Vol. 28B, pp. P-1.209.

15C. C. Petty, R. Prater, J. Lohr, T. C. Luce, W. R. Fox, R. W. Harvey, J. E.
Kinsey, L. L. Lao, and M. A. Makowski, Nucl. Fusion42, 1366(2002).

16R. W. Harvey and R. Prater, inRadio Frequency Power in Plasmas: 14th
Topical Conference(AIP, New York, 2001), pp. 298–301.

17G. M. D. Hogeweij, N. J. Lopes-Cardozo, M. R. De-Baar, and A. M. R.
Schilham, Nucl. Fusion38, 1881(1998).

18S. V. Kasilov, D. Reiter, A. M. Runov, W. Kernbichler, and M. F. Heyn,
Plasma Phys. Controlled Fusion44, 985 (2002).

19J. A. Konings, A. G. Peeters, G. M. D. Hogeweij, and E. Westerhof, in
Proceedings of the Ninth Joint Workshop on Electron Cyclotron Emission
and Electron Cyclotron Heating, Borrego Springs, California, 23–26
January 1995(World Scientific, Singapore, 1995).

20K. Nagasaki, A. Isayama, S. Ide, and JT-60 team, Nucl. Fusion43, L7
(2003).

012502-13 Modeling of nonlinear electron cyclotron resonance… Phys. Plasmas 12, 012502 (2005)

Downloaded 31 Jan 2005 to 129.27.161.32. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


