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In this paper we present results of analytical and numerical studies of the passive cyclotron current
drive efficiency in mildly relativistic toroidal plasmas. The problem of linearization and separation
of the electron and photon balance equations becomes nontrivial for high-temperature éagmas
D—3He) with low electron pressuré3,<0.1) due to the increased effect of radiation friction. The
conditions under which this separation is possible is derived in this paper. The linearized problem
for the electron distribution is formulated in the form of a standard variational principle, which
includes both Coulomb collisions and “collisions” due to cyclotron radiation. The reduced
variational principle for the current drive efficienéyeneralized Spitzer—Hia function is derived,

as well as its bounce-averaged form for toroidal plasmas. Finally, a convenient form of the passive
cyclotron current drive efficiency is introduced, which can be used for a self-consistent modeling of
passive cyclotron current generation in tokamaks with the help of fish-scale strufteseshe
companion paper, W. Kernbichler and S. Kasilov, Phys. Plas&a$128 (1996]. © 1996
American Institute of Physic§S1070-664X96)04311-X]

I. INTRODUCTION The particular way of creation of such a narrow radiation
distribution was not discussed in this study, but it looks im-
The passive cyclotron current drive method proposed fopossible with a simple wall structure, as proposed in Ref. 1.
toroidal plasma trapshas been extensively studied in the The angular distribution of radiation created by fish-scale
literature®~> These studies show that the amount of drivenstructures is rather broad ovérmnd varies with the position
current can be sufficient for a tokamak-reactor based oin the plasma. Thus, in order to obtain reliable values of the
D—°He fusion schemes with high operational electron templasma current and its profile, one has to take into account
perature T,>40 keV, staying relatively small for DT the wall structure in a consistent way. Such a study has been
schemes, witfT,, in the order of 10 keV. But the method also performed numerica|ﬁy7 for an inhomogeneous cylindrical
looks attractive as a source of a seed current, especially fgflasma column surrounded by a reflecting wall with a fish-
tight aspect ratio tokamaks with a large amount of bootstragcale structure. The detailed derivation of the passive cyclo-
current, because the main amount of current is driven in thgon current drive efficiency used in that study is given in the
center of the plasma. This was shown in Ref. 3 with the he'ﬁ)resent paper.
of scaling laws, and it is shown in Refs. 6 and 7 in more  The previous studies of the local efficiency of passive
detailed analyses. cyclotron current drive were performed in Ref. 3, with the
The current sustainment method proposed in Ref. 1 azssumption that current is produced mainly by suprathermal
sumes a “fishscale” structure of the reflecting wall of the g|ectrons, which allows for the use of the asymptotical for-
plasma chamber, which provides an asymmetric wall reflecmy|a for the collision frequencyin particular, these studies
tivity for the cyclotron radiation in a toroidal direction, thus spowed that besides the direct momentum transfer from the
creating the nonzero total parallel momentum of the photoRagiation to suprathermal electrons, an important role is
population. Finally, as a result of the interaction with theplayed by the Fisch—Boozer efféttvhich contributes an
plasma electrons a current is driven in the plasma. As it wagqgitional amount of current. In addition, the effect of tor-
originally seen in the literature, the presence of fish-scaleoidicity, which should decrease the plasma current, was
structures should lead to an increase of cyclotron energ¥nown to be not dramafidor the current generated by ra-
losses from the plasma due to the decrease of the effectiv§ation propagating ag=40°, which was recommended in
wall reflectivity. The optimum current production should be et 3.
expected at small fish-scale angles in the order of |5 {he present paper the computation of the efficiency
Op=(1-T)/2, wherel' is the reflectivity of the reflecting a5 performed without the asymptotical approximation, and
surfacet _ _ o therefore, in particular, includes the response of the back-
The more detailed studies of the local efficiency of they o ng electrons, which partly recover the parallel momen-
passive cyclotron current drive metﬁodhowed_ that the  tm |ost by the tail electrons, thus increasing the current
highest efficiency is obtained if the reflected radiation propagjye efficiency. The role of this effect is more important for
gates at an anglé=40° with respect to the magnetic field. pigh temperature plasmas because of the relativistic satura-
tion of the current drive efficiency for suprathermal elec-
3Electronic mail: kernbichler@itp.tu-graz.ac.at trons.
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Another important effect that was taken into account isL,. The photon distribution is governed by the equation for
the local relaxation of electrons by means of cyclotron radiathe radiation intensity, which, neglecting refraction, can be
tion. Usually this effect is neglected in the literature on cy-written as
clotron losses and current drive. The argument for that usu-
ally is that the radiation friction forc&, is small enough divkl M (6,¢)1=10"(0,¢6)— a2 (0,617 (6, ).
compared to the Coulomb orf&.. So this does not signifi- 2

cantly distort the electron distribution from the Maxwellian . Lo . . N
one. This basic assumption allows us to linearize thén this equationk is the unit vector in the direction of the

(M) i (M) (M) i i
electron—photon equilibrium problem, considering separatel ey, I‘". (6,¢), Jo (6,¢), anda,,” (6,) are the Intensity, the
the distribution of radiation intensity in the Maxwellian emission coefficient, and the absorption coefficient, respec-

plasma and then finding current from the linearized kinetict'vely’ for the M =0, X mode of propagation of the wave.

equation, which includes the effect of radiation in the form Here w is the wave frequengy@ is the a'ngle between the
of a quasilinear source terfsee, e.g, Ref.)3 wave vector and the magnetic fidldave pitch anglg and¢
The small parameter ' of ' this approximation is the azimuthal angle of propagation. It should be noted here
F IF o~ (4IA B)(TJME) (y20%c?) may be violated for that in some of the formulas the arguments and indices are
't C e e

. . itted in order to obtain a shorter notation.
high-temperature plasmas with a small electron pressur@™ ~ _ .
g P b P The operatorL, includes both the radiation friction

B.=8mn,T/B? in the order of a few percent, because the . o .
tail electrons mainly responsible for the losses and the genf_o_rce due to spontaneous emission and the quasilinear diffu-
eration of current are already sufficiently relativistic<{(c). sion due to stimulated emission, as given by
However, as is shown below, the linearization stays valid, i PPEICIN i

even in t.h|s case, if the optical th.lckness. of the _plasma is big Lofl,f)=—5 > f dK L, Y D§]M)5( y—
enough in the low-frequency region. This permits us to con- m=C™ n==o @

sider the interaction between the electrons through cyclotron

radiation as a sufficiently local process, described with the —u, cos 9)['50M)(9,¢)|:n+|mﬂ]f, ®)
help of a radiation collision integral, derived in the nonlinear

case in Refs. 10—12. The nonlocal radiation effects that dis- . R .
: L . . = J1+u? -
tort the Maxwellian distribution due to the finite plasma S|zeWherey L+u”is the relativistic factore is the cyclo

stay small. The small parameter of this approximation is deEron frequency for a particle at rest, apd=mc’/T is the

. : : . . inverse temperature.
rived in Sec. lll. In this section, the general nonlinear prob- .

g . . . The momentum space coordinagesire changed to the
lem of the electron—photon equilibrium is also linearized. . . X

L : . : . imensionlessl according to
As a result, the kinetic equation contains the Imeanzedd

radiation collision operatofderived in Sec. IV, together
with the quasilinear source term and the Coulomb collision

operator. Instead of this kinetic equation, an equivalentvhereu, andu, are the transverse and parallel components,
variational principle was introduced, similar to the one usedespectively.

Nwce

(O]

p=umpc, (4)

in Refs. 13-15. The operatol,, is defined as
The reduced variational principle for the current drive
efficiency (generalized Spitzer—Hia function is derived in ~ Nwg 0 9
Sec. V. In the same section the passive cyclotron current n=w—wE+cos«9 au,’ ®

drive efficiency, which is related to the radiation intensity, is
introduced. The bounce-averaged problem for the generalFhe polarization factors are given as
ized Spitzer—Hem function is formulated in Sec. V. Finally,

the numerical method and the results are presented and dis- DX Uy 70N 2 o[ cos 0—u 300 2
cussed in Sec. VII. n vy o0 L ysing " '
(6)
with J andJ’ denoting the Bessel function and its derivative,
Il. FORMULATION OF THE PROBLEM respectively, with its argument being

For simplicity, the coupled problem of the electron— nu. sin @
photon equilibrium is considered here for the case of a uni- A= _L—a (7)
form magnetic field and a uniform plasma along the mag- Y~ U €oS
netic field lines. !n this case Fhe eIec'Fron distribution functiony, blackbody radiation intensity in the Rayleigh—Jeans
f obeys the stationary kinetic equation, limit, entering in Eq.(3), is given as

»°T

of . -
— =L(f.H+Lg(1,H)=0, (1) lRi=g 32" (8)

with the relativistic Coulomb collision integreﬂc and the The absorption and emission coefficients in E2).have the
electromagnetic interaction operator for cyclotron radiationform
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aM(6,4) a(f) WhereI:C is the linearized Coulomb collision integrdl.lt
( j(M)(a b) } ={ i(f )] should be noted here, that the second-order t@rrl ) 5f
® ' was neglected. The rest of the terms are regrouped in the

_ 472e2 f ip y o) following way:
me Lem 8f=Ley(I1ry, 0F) + LIyt 81, o), (18
X 8| y— %—u” cosa)(l L“}f. Qem=Ley(lo,fo)- (19
© R It should be noted that for the derivation of Ed.7) one
(9 should use the obvious equality,(l y,fo)=0.
It should be noted here that, e.g., the notatigf{(6,¢) Note that the subintegrand of the neglected term,
means that is a function ofw, 6, and ¢, whereas the nota- (I ~Irykn of, is not always small compared to the retained
tion a(f ) indicates thatx is a functional off. one,lri, f, because the intensityis sufficiently different
Throughout the paper the following short notation for from the Rayleigh—Jeans intensity, in the high-frequency
electron and photon phase space integration is used: region. For this reason Eq17) is not valid for a particle
distribution function in the distant energy tail, which, due to
_ - 3 the effect of the radiation friction force, differs strongly from
f dpzn:z_oc d°p the Maxwellian distribution function at those high energies
(see Ref. 1Y. However, the particles giving the main contri-
B 33 - ® ® bution to the cyclotron losses and to the current drive, stay
=2mm°c n;m wdu” fo duyuy, (100 not very far away in the tail, and the corresponding integral
is small compared to the retained one and can be safely ne-
_ o ) glected. This comes from the fact that most of the energy and
f dKZM;J’X fo dewd Q momentum is radiateand absorbedby the particles being
of interest in the low-frequency region below a certain cutoff
-3 J“dwf" dqbfwde sin 6. (11 frequency defined as a solution to the following equation:
M=ox Jo - Jo aa™M(@M(9),0)=1, (20)
lIl. LINEARIZATION wherea is the typical plasma size and= w/w., is the di-

mensionless frequency. In this frequency region the plasma
For the purpose of linearization, the electron distributionis optically thick and the radiation is absorbed almost locally,
function is presented in the form staying very close to the Rayleigh—Jeans law. With the same
argument, in this region one can neglect in E).the radia-

f=fo+df, (12 tion transport term ditk 81) as well as the small term
where Sa(l — I gy. Using Eq.(15) for 8l one obtains the local rela-
tion
fom e ey~ py) (13 85— ba gy ag 81=0 21
0" 47m3c3K () Ry = da gy , (21)
. . . . where
is the unperturbed Maxwellian distribution, aAélis a small A A
perturbation. The radiation intensity is split into two parts: oj=J(of), dSa=a(sf). (22
(a,j)=1o+ 8l (Sa,d)), (14)  Thus, the quantity.gy can be interpreted as the local linear-

) o ) _ ized radiation collision operator. The only nonlocality of the
wherel, is the unperturbed radiation intensity that satisfiesproplem is contained in E417) in the source functio@gy,
the equation which is almost the same as used in Ref. 2. It differs only
div(lzlo)=j0— ol (15) because qf t.he presence of a conveptive term correqunding
' to the radiation friction force. But this term is rather unim-
where the unperturbed absorption and emission coefficiensortant for the current drive problem under consideration,
given by because of its symmetry over parallel momentum.
- . A In order to verify the approximation, one has to make
ao=a(fo),  jo=J(fo)=aolry, 10 sure that the power fraction radiated at frequencies above the
are related through Kirchhoff's law. The perturbation of the cutoff frequency is small compared to the total power emit-
intensity, 81, is caused by the deviation of the electron dis-ted by the particles from the phase space region mainly re-
tribution function from the Maxwellian one. Here the argu- sponsible for the losses. It can be presented as
ments in the notation of the radiation intensities, the absorp- T P M) —
tion, and emission coefficients, respectively, are omitted. EMZO’XIOdefEEZ’W) do W™(w,0)
After sub;titqtion of Eqs('lz) and(14) into Eq. (1) one Fe= Su—ox/5dof; do WM (w,0) (23
obtains the kinetic equation in the form

A A where WM is the power density emitted at a given fre-
Lcof+Ley 6f=—Qgwm, a7 quency and wave pitch angle by a single particle,
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"0t 1 1
e‘w
M(w. 6)= ce in a2n (M) 1=A—ﬁ§exp{— 34 ) , 30
WM, 0)=y — ngl sin fw?D! o | o+ o 0
X 8[n—(y—u, cosb)w]. (24)  Where
2

Tgking into account that most of the losses occur at wave  p _ § Jrme Wpe .y a

pitch angles close té==/2 and that the corresponding par- 2 Cwee

ticle pitch angles are also close (&=7/2, one can set the Since ,LLKg3<A one can write ko= ky+Ax, where

cutoff frequency to its value at==/2 and consider only the Axliy<1. Taking into account Eq29), one obtains
particles withu,=0 for estimating the power fraction, Eq. X '

(23). Ak 3In(uy®)  wo—wx
The procedure of making such an estimate is well known 4, ~ wkl® e (32)

(e.g., see Ref. 170ne should take into account the overlap- ] ) )
ping of cyclotron resonances, which allows us to change the 190 find out which particles are the most dangerous ones
summation over the harmonics to an integration in @¢). ~ for the approximation one has to find the “highest” fre-
This integration can be performed by means of ghienc- ~ dUency, still giving a sufficient contribution to the losses
tion. After substitution of the asymptotical formulas for the from the equation

Bessel functions that enter the polarization facibf:,%"), the A 9
integration over the wave pitch angle can be performed with A= aaﬁ,x/%=— ex;{ —M< Kﬁ’f’ﬁ W)
a steepest decent method. The remaining integration over the fux "X
frequency in the denominator in ERJ) is elementary. In  whereA=1-Tis the absorption coefficient at the wall. With
the nominator one can use the fact that the main contributiod *<A one can use the same approach as before to obtain
just comes from the neighborhood of the cutoff region and

: (33

. . . . AKU 3 |n A
perform the integration by parts. Finally for one obtains K_x: — ,lL_K)l(,_ (34
r~ 4.3t o2 exg — 2_w§_ 2_(‘);‘) where kyyx=kx+Aky is the « value for this upper fre-
5 V2my 3y° Sy qguency of the extraordinary mode. Using E84) one can

express the relativistic factoy of the considered particles
, (25  through

Ak
wherewy = 0t (/2). y= 'yx( 1+ 3—K”> . (35)
X

The formula for the absorption coefficient is obtained in
a similar way. The only difference is that the integration isHere yy is given by Eq.(28) with the substitution of the
performed in the electron momentum space. The last integrautoff frequency of the extraordinary mode.
tion over energy can also be performed with a steepest de- Expressing in Eq(25), the quantitiesy, wg, and wy

cent method, givindsee Ref. 1y through the quantityc, and using Eq(29), for the power
3 2 4 fraction, one finally obtains
— W
asr'\//lz)ZE TH CC:cee; D(W'\;IZ) r =~ 4.31/2 (In A)3/2 exp — SMZ (36)
€ 5,”_1/2 /,LA1/3A2/3 10In A .

, (26) As soon as this parametey is small, the linearized system
of Egs. (15 and (17) stays to be valid for the problems of

1/3 9
Xexp —u| K —1+m§

with Dg:;)zzl andD§T%=1/(,uK1’3). Here cyclotron losses and passive cyclotron current drive, even
o without a sufficient Coulomb relaxation. In Fig. 1 the behav-
= 9_w: 2_7 3 @27) ior of the power fractiorr . is shown for a typical plasma
2n 8 0 with the densityn,=2x10"° m 3, =6, and the stationary

is determined by th ii f th ddl int on th magnetic fieldB,=10 T for different values of the plasma
IS determined Dy the position of the sadgle point on e €Ng;, o 5 "one can see that, is more restrictive at high values

ergy axis. This also provides one with the correspondgncgf wall reflectivity staying, however, small for realistic re-
between the wave frequency and the energy of the part'def?ectivity values

responsible for the emission and absorption at this frequency,

4w 1/3
Yo= (_ :) . (28
3u IV. RADIATION COLLISION OPERATOR
Using the approximate formulé26), the equation for the Introducing the normalized perturbed distribution func-
cutoff frequency(20) can be written as tion f as
1 -~ Of
1=A —expg — W3y , 29 =_
o F{ M| Ky 206 (29 f 7o (37
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One of the properties of the radiation collision operator is its
self-adjointness with respect to the same scalar product as
the Coulomb collision operator. This follows from the sym-
metry of the functionaKgy,,

Ken(9,H)=Keun(F,9). (41)

The positive definiteness dfg,, follows from the Boltz-
mann H theorem, which can be checked by computing the
local rate of entropy productiofsee, e.g., Ref. 14

0.8 T T T T T TTT T T T T TTT

r. -]

ds “ o~
EEKEM(f,f )

T T T | T T T x T T P ¥ I“,-'l T T

1 1.0 | i 1 1 I 1 Il 1 I i L

=4772e2m2cf dKJ dP

2
XA Lnf—(fdP AL, f ))/ (fdP A” .
FIG. 1. Quantityr, versus the wall absorption coefficient for different val- (42)
ues of the plasma siza=0.3 m (solid line); a=1.0 m (dotted ling; and
a=3.0 m(dashed ling The equilibrium distribution is reached when the entropy

production stops. As one can see from ES), the operator
L, has the following form:

and substituting the perturbed intens#ty from Eq.(21), for

~ 1% 17
the linearized radiation collision operator, one explicitly ob- Ly=— (y—u, cos¥b) EﬂLCOSﬁ -

u, au
tains * :
4722 = _7 +cos 6 7 (43
Lew 6f =~z > | dK LA dy auy’
n=-—w«x
This operator actually does not depend on the indeand
~r ~ 2 the frequencydue to thed function), so the right-hand side
x| Lo (J dP Alnf )/ (f dpP A” of Eq. (42) is zero ifL,f is constant everywhere in the elec-
tron space. But this should be true for dllangles(due to
(38 i I -
_ ) ) integration over then so the derivatives of over y andu,
with the following notation forA should be separate constants. This gives one the unique form
A=AM(u, ,u,,,0) of the equilibrium distribution
f=Co+C,y+Cpu (44)
0% Nwce 0Ty YT plis
ED“"”—&( -— cosﬁ)f | Ry- 39 .
AT e 0TR (39 Lihere all three constants are much smaller than unity, be-

This operator preserves the parallel momentum and the tot&f"uﬁe of thi use of th_e Iirrlle?rized collis.ionhintegral. Qne cfan
energy, which can be shown by multiplying E@®8) with easily see that Eq44) is the linear term in the expansion o

either y or u,, and subsequent integration over the momen2 shifted Maxwellian distribution with a modified density
I

tum space. The parity of the distribution function over theand temperature:
changeu; to —u, is preserved as well. m&y—V,p,

Let us introduce now a variational principle similar to f8h= const ex;é -
the one derived in Refs. 13 and 14 for the linearized Cou- (T+HAT)VI-(Vy/c)

lomb collision integral. Multiplying Eq(38) by g and inte-  whereV, is the velocity of a frame moving along the mag-
grating over the electron momentum space, one obtains theatic field line. In such a moving frame the given Maxwell-

, (45

positively definite quadratic integral functional, ian would be at rest.
. . The linearized radiation collision operat@8) can be
Kem(9, )E—f dp glew of presented in an invariant form,
4m?e? SEPREENIN got :EiJf(Dijif,
:W f dK f dP A(Lng)(Lnf) ot Eu J O—,yl 0 ay]

—U dP A(Lng))“dp A(Lnf))/ —f d3p’ f4RU(y,y") %) (46)

< [ dap A (40) where prime denotes the dependence on a primed argument,
' y'=y are the coordinates in the electron momentum space,
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andJ=4(p)/d(y) is the Jacobian of the coordinate system. Innate system using the pitch angle-arctan ,/p,) and the
the case considered aboye (u, ,u;) andJ=u, m3c®. Here  momentum modul@= \/pf + plzI as independent variables:

the gyrophaseb was omitted because nothing depends on it. 26202 T
Using Eq.(46) for the bilinear form(40) one can obtain DPP= 3 ge 2 sir? x, (48)
- c
o gg .. of
K (,f):fd3 fo —7 DIl — 2€?w3 T
em(d P To ay' ay’ Dp)(:Dxp:?‘;)re sin y cosy, (49)
g af’ ,
—f d3pf d°p’ fofg T RI(YY') —57 e weel 3 3y
V' ! ay')’ XX = | — 4=
“0 15 (21 15
where integration oved®p means the general formy J. —110+ —2—(—+ _33/ In(u+y)|cog X], (50)
Performing the integration over the photon phase space vari- urouy u

ables in Eq.(40), one can obtain both the diffusion tensor whereu is the normalized momentum modJleee Eq.(4)].

and the kernel of the integral part in E@7). The most convenient coordinate system for presenting
The shortest form of the diffusion tensor can be obtainedhe kernel in Eq(47) is in a coordinate system usingand

after the summation over cyclotron harmonic# a coordi-  u, with the Jacobiard=mqc3y, resulting in

R R\ 2e202K,(n) vy’ - 1 o
= C— DMD M@ (1—|\o))[nu —n"u,|-|ny’ —n’
(RUW' R“M) meno? i -y Ul M:ZO,X n,nE’::L n Do O(1=[No|)[ny; il [ny Yl Y
) -1
< ( E d’y” ,y112€7,u,y” D:;/(/M)®( ,yr/2_ u‘/‘IZ_ 1) ] (51)
n//: 1
|
Here V. PASSIVE CYCLOTRON CURRENT DRIVE
EFFICIENCY
ny'—n'y
Kozm, (52) At this point, the problem of finding the passive current
| I drive efficiency in a uniform magnetic field can be formu-
U (Ny —n"y)—u(n'y'—n"y") lated in a variational form as an adjoint problem of finding
p_ Yy Y itn-y Y . . - e . 151920
1= Ny —n'y : (53)  the generalized Spitzer~Hua distribution function->*

Although this procedure is well developed for the case of
where for the polarization factors one has to use(Bgwith  Coulomb collisions being the only relaxation mechanism, we
u, =(¥*—u2—1)"2 u, and y with the number of primes briefly repeat this formulation; which now also includes the
(0,1,2 corresponding to the number of primes on the polar-collisions due to radiation. This is necessary mainly to
ization factor. The wave pitch angkentering the polariza- clarify the notation, which is further used, and to introduce
tion factors given by Eq.(6), should be taken as the passive cyclotron current drive efficiency, which is dif-
f=arccos\,. ferent from the one normally used in the literature. The so-

Using the differential part of the fornt88) and the de- |ution to the problem of finding the minimum of the func-
tailed equilibrium principle(each component of the flux is tional,
zero separately for the Maxwellian distributidr=cons},

one can obtain the expression for the radiation friction force Kp(? )EK(f,%)_QJ d®p TQgw, (56)
as
Jlnf J satisfies at the same time the linearized kinetic equéfi@n
Fi=Dil ] 0_ — D'l _7], (54) Heref is the normalized perturbed distribution functi(8v)
Iy ay andK is a positively definite quadratic functional symmetric
Using Eq.(48) in the initial variablesp, ,p,, one obtains over its arguments,
o 2Felp [ (B K(@.F)=Ke(8.H)+Kem(8.f ). (57)
amc vy mc/ |’ HereKgy, is given by Eq(47). The corresponding functional
K¢ for Coulomb collisions is defined as
2e2w2 p p 2
I— _ Ce_<_i (55) R . A A
3mc’ y \mc/ ’ Kc(cj.ﬂz—J d*p gLc oF=KL(@,H)+KE(§.1).
which is the same as obtained with direct calculatfon. (58)
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where the superscripesandi denote electron—electron and I'=4mnge*Aqe. (64)

electron—ion collisions, respectively. Explicitly, one has
2 In the formulas(60) and (62) u=p/mc, u'=p’/mc, y

KE(Q,f )=f d3p DI (y)fo(y) wﬂﬁ'—) =\J1+U? y'=J1+u'? o=In(u+y), and ¢'=In(u’+7v/).
ay The electron—ion collisions are well described by the Lor-
entz model because the only important effect is pitch-angle
—f dspf d®p’ fo(y) fo(y )R(Y,Y') scattering represented by the diffusion tensor component
R D{*, given as
Xg(y)f(y"). (59 r'Zmy
As given by Ref. 16, the nonzero components of the = Di(P)= 203 (65
diffusion tensor for the electron—electron collisions have the
following form in p, x variables: In the integral part of the collision operat@1), which
am*ciTy p’ is derived in its full form in Refs. 21 and 16, only the first
DEP(p)= e’ ( fo dp’ v fo(p)H[29%(u'y —0a’) harmonic of the Legendre expansion of the kernel over the
el

pitch-angle variable is retained. This, however, permits us to
% p’ solve the current drive efficiency problem exactly for the
+3U'7’—(3+2U'2)0']+f dp’ — fo(p’) case of a uniform magnetic field with Coulomb collisions
P Y being the only relaxation mechanism. Also, it continues to be
a good approximation in the case of a nonuniform magnetic
X[2y"2(uy— U)+3U7—(3+2U2)U]), field (see Ref. 2D or in the case where collisions due to
radiation are taken into account. R
DXY(p)— m CFy [f dp’ _f o(p) Putting the variation of the functiondb6) over f to
zero, one obtains the kinetic equati¢hi7). Therefore, the
minimum function of the functional56) is the general solu-

2u'y'

12+ 1 'y —o' )+ =— 2 [(3+2u'?)o’ tion for thg electron equilibrium problem. However, for the
u 2u current drive problem the general solution is not necessary.
, The only quantity of interest is the parallel current density,
rAt * ’ P ' 12 u
~auy) [ ap &t 223 e ©  boosy .
P j”=ef d°p 5va=Efd3p fo(p)f. (66)
_y'2 _ - 2
T (uy—o)+ 20752 [((1+4yT)o Following Refs. 15 and 19 one can present this quantity in
the form
—(3+2y2)uy])]. (60) _ .
Ju=f d”p 9Qem. (67)

The kernel of the integral part of the electron—electron col-
lision operator has the form where the reduced Green’s-function of the full collision op-

Re(Y,y')=cos y cos x'[Ry(p,p’)+Ru(p,p’) eratorg satisfies the generalized Spitzer-+hiaequation,

+Ry(p",p)], (61) Le(fod) +Lem(fod) = —ev;fo. (68)
where This property follows from the symmetry of the functional
m (57) over its arguments. Equatiai$8) is equivalent to the
Ri(p.p") =+ 702 s(p—p'), (62 minimum condition of the functionaks,(g) given by
e
3m?c A ~ a N
Ro(p,p’)= W 'y’—cr’+%(5y’cr’—5u’ KSH(Q)ZK(Q,Q)_ZJ d°p evfog. (69

uw o o Due to the generality of the functial, one can obtain the
5 [(5+2u™) e’ =5u"y] parallel current for any linear current drive method with
power input to the electrons without the explicit solution of
3 1o the kinetic equation. However, for the problem considered
o [3U"—5u—=(33+6u")y'0’] here, it is more convenient to introduce the passive cyclotron
current drive efficiency defined as

—u’3)+'y

2

+ulu(y'o’—u’)

2 MW(g)= f dP AL.g, 70
+u y“ (3u'+U'3—3y'a")|@(p—p’), o ()= L (70
63) with A andLn given by Eqgs(39) and(5), respectively. This
quantity links the parallel current density directly to the ra-
and diation intensity through
Phys. Plasmas, Vol. 3, No. 11, November 1996 S. V. Kasilov and W. Kernbichler 4121

Downloaded-15-0ct-2002-t0-129.27.161.63.~Redistribution-subject-to-AlP-license-or-copyright,~see=http://ojps.aip.org/pop/popcr.jsp



. Mr a1 (M) sition. They have the order of the ratio of the Larmor radius
Ju:f dK 7, (0)1,(6.¢), (7D to the magnetic field scale and can be safely neglected.

The derivation of Eq(75) is valid if the collision opera-

thus giving the amount of parallel current produced by thegrs a5 well as the source tef@r,, obtained for the case of
unit amount of radiation from the unit interval of frequenciesthe uniform magnetic field, are locally valid for the nonuni-

and angles. In this sense, it is completely analogous 10 thgy-m magnetic field case. The local formula for the electro-
absorption coefficient9). The only difference is that it gives magnetic interaction operat8) in turn is valid if the cor-
the current density instead of the absorbed power density. rojation time of the radiation electromagnetic fielt,,
which limits the process of wave—particle interaction, is
VI. CURRENT DRIVE EFFICIENCY IN TOROIDAL short enough compared to the time of wave—particle phase
GEOMETRY change due to the magnetic field nonuniformity along the
_ o particle trajectontg=(v;n dw /ds) Y2 Hered/ds means
In order to describe electron kinetics in tokamak geom+ne derivative along the magnetic field line amés the char-
etry, the set of guiding center variables /') is introduced.  acteristic number of the cyclotron resonance. The correlation
The momentum space variablg's=(po, xo.#) are the mo- time is determined mainly by the Doppler broadening of
mentum module, the pitch angle in the magnetic field mini-resonances, which giveat.=(v,nw /c) . It is usually
mum on the given magnetic surface, and the gyrophase, remall enough compared tAtg in tokamaks with realistic
spectively. The first two variables are the integrals of mOtiO“parameters for the plasma and the magnetic field.
expressed through the local values of the momentum module | the “collisionless” confinement regime,<v? (v, is
and the pitch angle, the collision frequency Eq. (75) can be simplified with the
si y  sir? xo help of the bounce-averaging procedure. The same result in a
P=Po. —g— =g (72)  shorter way can be obtained by averaging the functics@)l
0 min over the volume between two neighboring magnetic surfaces
whereB, is the local value of the magnetic field aBg,,is  (see Ref. 14 In order to obtain such an averaged functional,
its minimum value on the given surface. The spatial guidingone has to transform the local momentum space integration
center variables'=(¥,9,{) are the normalized poloidal flux variables to the set of new variablgsintroduced above. In
and the poloidal and toroidal angles of the quasitoroidal coparticular, the functional57) entering Eq.(56) after this
ordinate systentr,d,{), respectively. For the poloidal flux transformation takes the general form
one has the expression

.z g of
r - 3 ) = _
lpzf dr' R(r,0)By(r', )=V (r,9), (73 K@) fd Y IyToD™ 5 5y
0
_ i i radi gy ot
Wh(_argR Ro+r costd is the af:tual_value o_f the big rgdlus, _f dsyf d3y 3,3 FofoRI(v,y") ot T
Ry is its value for the magnetic axis, amy}, is the poloidal y oy

physical magnetic field component in quasitoroidal variables. .
The Jacobians of momentum space and coordinate space —f d3yf dy’ 3,3, fofgR(Y.Y DAY T (V).
variables are given as

(77

It should be noted, here, th&t!, R (y, y’) and R(y, y)
contain both Coulomb collisions and collisions due to radia-
&ion expressed in the new variablg's All the primed quan-

By COSxq r
Bmin COSY ' X By’

Jy=p? sin xo (74)

Neglecting the drift motion, the kinetic equation can be cas

to the form tities in Eq.(77) are the functions of the primed argument
g 00f  ~ N The average over the layer between two neighboring mag-
Voag ¢ 6f+Lem 6f+Qew- (79 netic surfaces is introduced as
Because of the toroidal symmetry, only the poloidal variation w -1
of the distribution function is taken into account in Eg@5), (K)= f_ A9 I(V, D)
where
s_d¥ _p Bycosy xf do I (¥, 9K(P,9), (79
dt my Bgr T
B B, which is also referred to as the poloidal average. Neglecting
=y COSXo0 5~ 1+(1- tarf xo (76) small corrections to the distribution functiohndg, which
min

come from the dependence @) and assuming these func-
is the poloidal velocity. The collision operators on the right-tions to be continuous and symmetric over egsn the re-
hand side of Eq(75) have a covariant form and can be easilygion of trapped particles 7—«,<ko<k,, Where
transformed to the new set of variabksy' according to the  tan? k=B i/ (Bmax— Bmin) @Nd B sy is the maximum value
rules of tensor algebra. Small terms appear in such a transf the magnetic field on a given surface, one obtains for the
form containing the derivatives over the guiding center po-average of the functiondl’7),
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a9 of Introducing the generalized Spitzer=dra function g that

(K(g,f ))=f d3y Jpfo(D), oy 7 corresponds to the minimum of the functional

KW@ =(K@-2 [ & HigWnd, (9

for the averaged toroidal current density, one has the expres-

- [ ey | @y amtotigRityy Ny

a9 of , — sion (see also Refs. 15 and 119
XW W_f dsyf d3y ‘Jb‘]befO
’ p r J :deyJ@Q :<fd3p@Q > (89)
X(ROY,Y )BT, (79 s o9 Qe =
Here the quantity,, is defined as T_he definitio_n of_the passiye cyclotr_on current drive effi-
ciency (70) given in the previous section remains the same,
Jo=(Jy), (80) however, the computation of the averaged toroidal current

and the bounce-averaged quantities, which are functions &fensity from the radiation intensity now includes the poloi-
one argument in the momentum spagesuch as the diffu- dal averaging, as given by,

sion coefficients, are given by .
(ins={ | dK 75V (0,9)157(6,2,9)). (90)

For the purpose of the present research it is convenient
to introduce a simplified model for the efficiency that allows
fis to study the effect of particle trapping on cyclotron cur-
rent drive. Assuming that the sour€,, is independent of

L1 .
<D”>b=J—b (JyD"). (81)

For the bounce-averaged kernels of the integral part of th
collision operators, one obtains the expressions

i 1 ' the poloidal angle, one obtains for the current the following
RIUY.Y Mo=77o77om (Jy(WI(Y IRV (y.y' ion:
(RY(Y,Y' )b 3y 3a0y) Gy Iy (YR (y,y')) expression:
®2 - (M) (M)
and <JI>S:f dK<7]w >Cy|(0)|m (01(1))! (91)
1 where
R)p=————— (3,(y)I,(y R(Y,y")). 83
N ey =23 2. :

Formulas(80)—(83) correspond to the region of passing par- I m?c? g,
ticles in the phase space, which is important for the currenfhis model is self-consistent with a straight-cylinder model
drive problem. _ of a tokamak in which the toroidal nonuniformity is ne-

Finally the averaged functionab6) takes the form glected for the radiation problem, so that particle trapping is

the only toroidal effect being included in this model.

(Kp(Fy=(K(t,f >>—2f d®y Jpf(Qemb - (84)

VII. NUMERICAL METHOD AND RESULTS OF KINETIC

Here the bounce-averaged sou is obtained in the
9 (o MODELING

same way as the bounce-averaged diffusion te(&br The
zero variation of this functional corresponds to the bounce- |n the present paper a tokamak with concentric circular
averaged equation. However, as in the previous section, Wagnetic surfaces was chosen for the numerical evaluation
are interested only in the toroidal current density average@f the Green’s functior§. The integral part of the electro-

over the meridian plane area between the cross sections afagnet interaction operator was omitted in the calculation

two neighboring magnetic surfaces, as given by because it plays the role of a correction term, the order of
i, /B 1\ -1 1/u compared to the Fokker—Planck part of this operator.
<j‘>S:B_” <ﬁ{><§> (85) The solution was obtained using the direct variational
0 method for minimizing the functiongB8).

This quantity is expressed through the normalized perturbed The generalized Spitzer—Fa functiong was presented

distribution functionf as as an expansion over the test functions,
Np NX 2
(s [ &y dfofwy,, ®  6=3 3 5 b (@3
where whereg; ; | are the unknown coefficients of this expansion.
1 The test functions are given as
(W) Bo/,\ R/\R & 1P, X)=0(po—p)O(pi+Ap—pPo)(Po—Pi) Pj(XO)i94)
:epg Sin xo COS xo LAVES -t 87 Here® is the Heaviside step functiop;=i-Ap, andAp is
JeBminMyo R/\R/ a step in the momentum module.
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The functionsP;(x) are the odd eigenfunctions of the

equatlon 20 i T 17 T T T T T T T 1 1T 17T l—
7 G xeKale o) — Pyxo) ;
- —sin €, — P - s
sin xoK1(€t,x0) dxo Xof2l€Xo dxo * Xo 15 ¢ ’;

+\jPj(x0) =0, (95 T T g

. . " —10 | —
which satisfy to the boundary conditions ( 10¢ 8
o0 F ]

P, P, i ]
J(XO)‘ _ j(XO)| =O, (96) 5[ R

aXO ‘ono (9)(0 |X0:7T r 1
Pj(Xb):Pj(ﬂ-_Xb):o’ (97) 0 L ol TR RATE NY VANEAN H N AR EIN N 2 B RO i

(el
9]

in the domain B xo<xp., ™ Xp<xo<, and equal to zero ! < 3 4
in the trapped region, < xo< 7— x, (see e.g., Ref. 22The p/(\[Z pr) [-]
functionsK; andK, are defined as

COSXo (98) FIG. 2. Theg function versus the dimensionless electron momentum. Here

Katexo=(1+e) [ do

COS x ! the pitch angley=/8; the inverse temperatupe=6.0; B.= (solid line);
B.=0.08 (dash—dotted line B,=0.04 (long-dashed ling B,=0.02 (short-
< fﬂ do(Ls 5 cos y % dashed ling and 8,=0.01 (dotted line.
€1,X0)= € COS ,
2( €, X0) . ( t ) COS X0 (99
with €,=r/R,. is the electron pressure. At a fixed plasma temperature the

The choice of the angular functio®(xo) is convenient ratio between the radiation collision operator and the Cou-
for the description of the Coulomb collision operator becauséomb collision operator is inversely proportional 8. The
they are the eigenfunctions of the pitch-angle scatteringlepletion of theg function in the high-energy region com-
operator?® In the particular case of a uniform magnetic field pared to the pure Coulomb relaxation cégg=) is stron-
they correspond to the normalized Legendre polynomials. ger for pitch angles close te/2. This follows from the an-

The minimum condition of the functiondB8) and the isotropy of the radiation collision operator.
additional constraints on the continuity of thegunction and The intensity related efficiency (92) was numerically
its derivative over the momentum module, calculated for the whole range of frequencies and radiation

itch angles with the help of the previously obtained
Ci(il)(givjv' 9i+1j,)=0i 0t Gij1 AP+ 2 AP? gpitzer—l%'am function Withoﬁt the use %f the asyymptotical
—0i+1.0=0, (100 formulas f_or Bessel fun_cti_ons. _The beha\{ior of this_ quqntity
as a function of the radiation pitch angle is shown in Figs. 4
Ci(iZ)(gi,j,l Oi+1j)=0ij11T20ij2AP—0i+11=0, (10D

give the linear algebraic equation system for the coefficients
9ij,-

It should be mentioned here that the direct variational S L L B B B
method of obtaining the generalized Spitzer#Halistribu-
tion proposed in Ref. 15 is modified here, by using the qua-

dratic splines as the components of the test functions over 6
the momentum module variable. In Ref. 15 the solution was
obtained in the form of a polynomial expansion, which fails L 4

at the high-energy region of the electron phase space. But

this region is of main importance for the problem considered (ap

in the present paper. 2
The dependence of the generalized SpitzeraHainc-

tion g on the momentum module is presented in Figs. 2 and

T T T ‘ T T T ] T L T T T T

friction force) is strong for lowg plasmas with high tem-
perature(u=6 corresponds to the temperature close to 80

3 for two different values of the electron pitch angigin the 0 Tl b v by
case of a uniform magnetic field;=0). One can see that the 0 1 2 3 4 5
effect of collisions due to radiatiofmainly the radiation

mainly p/(V2 pr) (-]

keV), where .
FIG. 3. Theg function versus the dimensionless electron momentum. Here
8mNn.Te the pitch angley=37/8; the inverse temperatuge=6.0; B.= (solid line);
o= B2 (102 B.=0.08 (dash—dotted linge B, =0.04 (long-dashed ling B,=0.02 (short-
0 dashed ling and 8,=0.01 (dotted line.
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FIG. 4. Passive current drive efficiencies for the X mode as given by dif-

ferent calculation models versus wave pitch ar@leHere u=6.0; 0=7.5; FIG. 6. Ratio between absorption coefficient and current drive efficiency
€=0.0; 7 for .= (dash—dotted line 7 for B8,=0.08 (solid line); 7 for G=aln for the X mode as given by different calculation models versus
B.=0.02 (dotted ling; 75 (short-dashed line and % (long-dashed ling wave pitch angled. Here u=6.0; ®=7.5; =0.0; 7/« for 8,=0.08 (solid

line); nla for B,=0.02 (dotted ling; 7/« (short-dashed line 7:/a (long-
dashed ling and 7:x/a (dashed-dotted line

and 5. Everywhere in the plots the dimensionless wave fre-

guencyw = w/ . is Used as a parameter.

The quantity g is calculated without both the integral of the electron distribution function in the high-energy re-
part of the Coulomb collision operator and the radiation fric-gion (the integral part of the Coulomb collision operatat
tion force. The numerical computation of the quantity is relativistic plasma temperatures. This effect is completely
based on the asymptotical formula for the Spitzershia neglected in the asymptotical model. The effect of collisions
functiong=ev /v used in Ref. 2, instead of the functign  due to radiation is obviously important for low-pressure plas-
derived in this paper. Herey is the effective collision fre- mas, e.g., foB,=0.02 the positive effect of the integral part
quency introduced by Fisch. is almost canceled by the negative effect of the radiation

As one can see from Figs. 4 and 5 the values of thdriction force. However, a3.=0.08 it is already very small.
passive cyclotron current drive efficiency given by the exact  An interesting fact is, that even without the use of the
model of relaxation are noticeably higher than those given byntegral part of the electron—electron Coulomb collision op-
the asymptotical model. This is due to the increased role oérator(background respongeone obtains somewhat higher
the response of the background electrons to the perturbatiafficiencies(ns) as compared to those calculated with the
help of the asymptotical formulge . This is mainly due to
the increased role of diffusion over energy for a relativistic
plasma(see e.g., Refs. 24 and,4s well as due to the de-
crease of the pitch-angle scattering coefficient due to thermal
effects. These thermal effects were not taken into account in
the early reference by Fisthised in Ref. 2. This effect is
obvious from the formula&35) of Ref. 16, in which the ratio

TI T T[T 7T 7T

Illllllllll

v 0.5 of the thermal velocity to the test particle velocity cannot be
° considered to be small for relativistic plasmas because both
— 0 the nominator and the denominator approach the speed of
o light.

Q_O 5 The passive current drive efficiencies for the X mode are

roughly five times as high as those for the O mode, finally
resulting in a much higher contribution of the X mode to the
passively generated plasma current. This follows from the
well-known fact of the X mode being the main contributor to
the cyclotron power loss.
6 [deg] For a more detailed comparison with the results of Ref.
2, the ratio of the efficiency; and the absorption coefficient
a is plotted in Fig. 6. This ratio-6—was introduced in Ref.
FIG. 5. Passive current drive efficiencies for the O mode as given by dif—2 and then used in Refs. 3—5. The results were again calcu-
ferent calculation models versus wave pitch ar@leHere u=6.0; w=7.5; . ’ ) . 9
=0.0; 7 for B.=o (dash—dotted line » for B,=0.08 (solid line; 5 for lated for the different models of relaxatlon.' One should note
B.=0.02 (dotted ling; 75 (short-dashed line and 7 (long-dashed ling that the agreement between the approximate formula for

Tyrrrrprres
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FIG. 7. Influence of toroidicity on the passive current drive efficiendpr
the X mode. Hereu=6.0; @=7.5; 8,=0.02; ¢=0.0 (solid line); &=0.1
(dotted ling; &=0.2 (dashed ling and =0.3 (dash—dotted line

FIG. 8. Influence of toroidicity on the passive current drive efficiepdpr

the X mode. Here the asymptotical approach for the Coulomb collision
operator was used. Hepe=6.0; w=7.5; =0.0 (solid line); ¢=0.1 (dotted
line); ¢=0.2 (dashed ling and =0.3 (dash—dotted line

G= e/ a given in Ref. 2 and its equivalent using Fisch’s
asymptotical relaxation modej/« is very good in the range
of the radiation pitch angl®=~40° of main interest for that
study. In addition to this, it has to be noted that the behavio
of this ratio »/« is very similar for the X and the O mode. . i’ Y .
In Fig. 7 the influence of the toroidicity on the current the velocity _space_due to_ thermal” radiatiprwere ac-
drive efficiency is demonstrated. One may notice that thisCO_unteOI for in earlier studies of ther m_ethods of current
influence is not very dramatic. However, even for small val-d_r ve. However, they were not considered in the case of pas-
ues of the inverse aspect raggit is not negligible. It results Sive _cyclotron current drlve.. The pqmputc_—zr modeling (.)f the
both from the rapid decrease of the additional current prc’passwe cyclotron current drive efficiency is performed in the

duced by the response of background electrons and from t e_sent paper Without asymptotice}li approximations for the
increase of the momentum loss cone in the phase space ¢ pitzer—Ham function and the quasilinear operator. It shows

responding to the region of trapped particlese, e.g., Refs that all three effects have an important influence on the pas-
22 24, and 25 T " sive cyclotron current drive efficiency. So, all three effects

should be taken into account for a self-consistent modeling
of passive current generation. The results of such a

lowing effects: Response of the background electrons; the
effect of “collisions” due to radiationimainly the radiation
prag); and the effect of toroidicity.

Most of these effectéexcept the diffusion of particles in

In order to clarify the role of the loss cone, the calcula-
tions were performed with the asymptotic Fisch form(dee
above in which the loss cone region was excluded from the
momentum space integration. The results for this quantity
are presented in Fig. 8. One can easily see that this effect
alone does not produce such a dramatic decrease.

Finally, in Fig. 9 the behavior of the efficiency in a
D-*He plasma with different concentrations GHe is
shown. In changing thiHe concentration, the electron pres-
sure is kept constant. The study of the dependence of the
efficiency on thelHe concentration shows a somewhat stron-
ger dependence on the effective charge number than the 1/
+2Z) law. This comes from the fact that the behavior of the
integral part of the collision operator, which plays a positive
role for the current efficiency, has a somewhat different scal-
ing with the charge number. The decrease of the current with
the charge number, however, is not dramatic. That leaves the
mechanism under consideration to be of interest for a future
D—2He reactor.

VIIl. CONCLUSIONS FIG. 9. Influence offHe concentration on the passive current drive effi-
. . ciency. Hereu=6.0; @=7.5; 8,=0.08; £=0.0; nspdnp = 0.0 (solid line);
The main feature of the present study of the passive, ;n_ = 0.25(dotted line: nsy/np = 0.5(dashed ling andnaydng = 1.0
cyclotron current drive efficiency is the account of the fol- (dash—dotted line
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