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In this paper we present results of analytical and numerical studies of the passive cyclotron current
drive efficiency in mildly relativistic toroidal plasmas. The problem of linearization and separation
of the electron and photon balance equations becomes nontrivial for high-temperature plasmas~e.g.,
D–3He! with low electron pressure~be,0.1! due to the increased effect of radiation friction. The
conditions under which this separation is possible is derived in this paper. The linearized problem
for the electron distribution is formulated in the form of a standard variational principle, which
includes both Coulomb collisions and ‘‘collisions’’ due to cyclotron radiation. The reduced
variational principle for the current drive efficiency~generalized Spitzer–Ha¨rm function! is derived,
as well as its bounce-averaged form for toroidal plasmas. Finally, a convenient form of the passive
cyclotron current drive efficiency is introduced, which can be used for a self-consistent modeling of
passive cyclotron current generation in tokamaks with the help of fish-scale structures@see the
companion paper, W. Kernbichler and S. Kasilov, Phys. Plasmas3, 4128 ~1996!#. © 1996
American Institute of Physics.@S1070-664X~96!04311-X#

I. INTRODUCTION

The passive cyclotron current drive method proposed for
toroidal plasma traps1 has been extensively studied in the
literature.2–5 These studies show that the amount of driven
current can be sufficient for a tokamak-reactor based on
D–3He fusion schemes with high operational electron tem-
perature Te.40 keV, staying relatively small for D–T
schemes, withTe in the order of 10 keV. But the method also
looks attractive as a source of a seed current, especially for
tight aspect ratio tokamaks with a large amount of bootstrap
current, because the main amount of current is driven in the
center of the plasma. This was shown in Ref. 3 with the help
of scaling laws, and it is shown in Refs. 6 and 7 in more
detailed analyses.

The current sustainment method proposed in Ref. 1 as-
sumes a ‘‘fishscale’’ structure of the reflecting wall of the
plasma chamber, which provides an asymmetric wall reflec-
tivity for the cyclotron radiation in a toroidal direction, thus
creating the nonzero total parallel momentum of the photon
population. Finally, as a result of the interaction with the
plasma electrons a current is driven in the plasma. As it was
originally seen in the literature, the presence of fish-scale
structures should lead to an increase of cyclotron energy
losses from the plasma due to the decrease of the effective
wall reflectivity. The optimum current production should be
expected at small fish-scale angles in the order of
QF5~12G!/2, whereG is the reflectivity of the reflecting
surface.1

The more detailed studies of the local efficiency of the
passive cyclotron current drive method2 showed that the
highest efficiency is obtained if the reflected radiation propa-
gates at an angleu540° with respect to the magnetic field.

The particular way of creation of such a narrow radiation
distribution was not discussed in this study, but it looks im-
possible with a simple wall structure, as proposed in Ref. 1.
The angular distribution of radiation created by fish-scale
structures is rather broad overu and varies with the position
in the plasma. Thus, in order to obtain reliable values of the
plasma current and its profile, one has to take into account
the wall structure in a consistent way. Such a study has been
performed numerically6,7 for an inhomogeneous cylindrical
plasma column surrounded by a reflecting wall with a fish-
scale structure. The detailed derivation of the passive cyclo-
tron current drive efficiency used in that study is given in the
present paper.

The previous studies of the local efficiency of passive
cyclotron current drive were performed in Ref. 3, with the
assumption that current is produced mainly by suprathermal
electrons, which allows for the use of the asymptotical for-
mula for the collision frequency.8 In particular, these studies
showed that besides the direct momentum transfer from the
radiation to suprathermal electrons, an important role is
played by the Fisch–Boozer effect,9 which contributes an
additional amount of current. In addition, the effect of tor-
oidicity, which should decrease the plasma current, was
shown to be not dramatic4 for the current generated by ra-
diation propagating atu540°, which was recommended in
Ref. 3.

In the present paper the computation of the efficiency
was performed without the asymptotical approximation, and
therefore, in particular, includes the response of the back-
ground electrons, which partly recover the parallel momen-
tum lost by the tail electrons, thus increasing the current
drive efficiency. The role of this effect is more important for
high-temperature plasmas because of the relativistic satura-
tion of the current drive efficiency for suprathermal elec-
trons.a!Electronic mail: kernbichler@itp.tu-graz.ac.at
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Another important effect that was taken into account is
the local relaxation of electrons by means of cyclotron radia-
tion. Usually this effect is neglected in the literature on cy-
clotron losses and current drive. The argument for that usu-
ally is that the radiation friction forceFr is small enough
compared to the Coulomb oneFC. So this does not signifi-
cantly distort the electron distribution from the Maxwellian
one. This basic assumption allows us to linearize the
electron–photon equilibrium problem, considering separately
the distribution of radiation intensity in the Maxwellian
plasma and then finding current from the linearized kinetic
equation, which includes the effect of radiation in the form
of a quasilinear source term~see, e.g, Ref. 3!.

The small parameter of this approximation
Fr /FC;(4/Lbe)(Te/mc2)(g2v3/c3) may be violated for
high-temperature plasmas with a small electron pressure
be58pneTe/B

2 in the order of a few percent, because the
tail electrons mainly responsible for the losses and the gen-
eration of current are already sufficiently relativistic (r;c).
However, as is shown below, the linearization stays valid,
even in this case, if the optical thickness of the plasma is big
enough in the low-frequency region. This permits us to con-
sider the interaction between the electrons through cyclotron
radiation as a sufficiently local process, described with the
help of a radiation collision integral, derived in the nonlinear
case in Refs. 10–12. The nonlocal radiation effects that dis-
tort the Maxwellian distribution due to the finite plasma size
stay small. The small parameter of this approximation is de-
rived in Sec. III. In this section, the general nonlinear prob-
lem of the electron–photon equilibrium is also linearized.

As a result, the kinetic equation contains the linearized
radiation collision operator~derived in Sec. IV!, together
with the quasilinear source term and the Coulomb collision
operator. Instead of this kinetic equation, an equivalent
variational principle was introduced, similar to the one used
in Refs. 13–15.

The reduced variational principle for the current drive
efficiency~generalized Spitzer–Ha¨rm function! is derived in
Sec. V. In the same section the passive cyclotron current
drive efficiency, which is related to the radiation intensity, is
introduced. The bounce-averaged problem for the general-
ized Spitzer–Ha¨rm function is formulated in Sec. V. Finally,
the numerical method and the results are presented and dis-
cussed in Sec. VII.

II. FORMULATION OF THE PROBLEM

For simplicity, the coupled problem of the electron–
photon equilibrium is considered here for the case of a uni-
form magnetic field and a uniform plasma along the mag-
netic field lines. In this case the electron distribution function
f obeys the stationary kinetic equation,

] f

]t
5L̂C~ f , f !1L̂cy~ I , f !50, ~1!

with the relativistic Coulomb collision integralL̂C and the
electromagnetic interaction operator for cyclotron radiation

L̂cy . The photon distribution is governed by the equation for
the radiation intensity, which, neglecting refraction, can be
written as

div@kIv
~M !~u,f!#5 j v

~M !~u,f!2av
~M !~u,f!Iv

~M !~u,f!.
~2!

In this equationk̂ is the unit vector in the direction of the
ray, Iv

(M )~u,f!, j v
(M )~u,f!, andav

(M )~u,f! are the intensity, the
emission coefficient, and the absorption coefficient, respec-
tively, for theM5O, X mode of propagation of the wave.
Herev is the wave frequency,u is the angle between the
wave vector and the magnetic field~wave pitch angle!, andf
is the azimuthal angle of propagation. It should be noted here
that in some of the formulas the arguments and indices are
omitted in order to obtain a shorter notation.

The operatorL̂cy includes both the radiation friction
force due to spontaneous emission and the quasilinear diffu-
sion due to stimulated emission, as given by

L̂cy~ I , f !5
4p2e2

m2c3 (
n52`

` E dK L̂n
g

v
Dn

~M !dS g2
nvce

v

2ui cosu D @ Iv
~M !~u,f!L̂n1IRJm# f , ~3!

whereg 5 A11u2 is the relativistic factor,vce is the cyclo-
tron frequency for a particle at rest, andm5mc2/T is the
inverse temperature.

The momentum space coordinatesp are changed to the
dimensionlessu according to

p5umc, ~4!

whereu' andui are the transverse and parallel components,
respectively.

The operatorL̂n is defined as

L̂n5
nvce

vu'

]

]u'

1cosu
]

]ui
. ~5!

The polarization factors are given as

Dn
~X!5S u'

g
Jn8~l! D 2, Dn

~O!5S g cosu2ui

g sin u
Jn~l! D 2,

~6!

with J andJ8 denoting the Bessel function and its derivative,
respectively, with its argumentl being

l5
nu' sin u

g2ui cosu
. ~7!

The blackbody radiation intensity in the Rayleigh–Jeans
limit, entering in Eq.~3!, is given as

IRJ5
v2T

8p3c2
. ~8!

The absorption and emission coefficients in Eq.~2! have the
form
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H av
~M !~u,f!

j v
~M !~u,f! J 5H â~ f !

j ~ f ! J
5
4p2e2

mc E dP
g

v
Dn

~M !

3dS g2
nvce

v
2ui cosu D H 2L̂n

IRJm
J f .

~9!

It should be noted here that, e.g., the notationav
(M )~u,f!

means thata is a function ofv, u, andf, whereas the nota-
tion â( f ) indicates thata is a functional off .

Throughout the paper the following short notation for
electron and photon phase space integration is used:

E dP[ (
n52`

` E d3p

52pm3c3 (
n52`

` E
2`

`

dui E
0

`

du'u' , ~10!

E dK[ (
M5O,X

E
0

`

dvE
4p
d2V

5 (
M5o,x

E
0

`

dvE
2p

p

dfE
0

p

du sin u. ~11!

III. LINEARIZATION

For the purpose of linearization, the electron distribution
function is presented in the form

f5 f 01d f , ~12!

where

f 05
nem

4pm3c3K2~m!
exp~2mg! ~13!

is the unperturbed Maxwellian distribution, andd f is a small
perturbation. The radiation intensity is split into two parts:

I ~a, j !5I 01dI ~da,d j !, ~14!

where I 0 is the unperturbed radiation intensity that satisfies
the equation

div~ k̂I 0!5 j 02a0I 0 , ~15!

where the unperturbed absorption and emission coefficients
given by

a05â~ f 0!, j 05 ̂~ f 0!5a0IRJ, ~16!

are related through Kirchhoff’s law. The perturbation of the
intensity,dI , is caused by the deviation of the electron dis-
tribution function from the Maxwellian one. Here the argu-
ments in the notation of the radiation intensities, the absorp-
tion, and emission coefficients, respectively, are omitted.

After substitution of Eqs.~12! and~14! into Eq. ~1! one
obtains the kinetic equation in the form

L̂Cd f1L̂EM d f52QEM , ~17!

where L̂C is the linearized Coulomb collision integral.16 It
should be noted here, that the second-order term~I2IRJ!d f
was neglected. The rest of the terms are regrouped in the
following way:

L̂EM d f[L̂cy~ IRJ,d f !1L̂cy~ IRJ1dI , f 0!, ~18!

QEM[L̂cy~ I 0 , f 0!. ~19!

It should be noted that for the derivation of Eq.~17! one
should use the obvious equalityL̂cy~IRJ,f 0!50.

Note that the subintegrand of the neglected term,
~I2IRJ!L̂n d f , is not always small compared to the retained
one,IRJL̂n d f , because the intensityI is sufficiently different
from the Rayleigh–Jeans intensityIRJ in the high-frequency
region. For this reason Eq.~17! is not valid for a particle
distribution function in the distant energy tail, which, due to
the effect of the radiation friction force, differs strongly from
the Maxwellian distribution function at those high energies
~see Ref. 17!. However, the particles giving the main contri-
bution to the cyclotron losses and to the current drive, stay
not very far away in the tail, and the corresponding integral
is small compared to the retained one and can be safely ne-
glected. This comes from the fact that most of the energy and
momentum is radiated~and absorbed! by the particles being
of interest in the low-frequency region below a certain cutoff
frequency defined as a solution to the following equation:

aa~M !~ v̄cut
~M !~u!,u!51, ~20!

wherea is the typical plasma size andv̄5v/vce is the di-
mensionless frequency. In this frequency region the plasma
is optically thick and the radiation is absorbed almost locally,
staying very close to the Rayleigh–Jeans law. With the same
argument, in this region one can neglect in Eq.~2! the radia-
tion transport term div~k̂ dI ! as well as the small term
da~I2IRJ!. Using Eq.~15! for dI one obtains the local rela-
tion

d j2da IRJ2a0 dI50, ~21!

where

d j5 ̂~d f !, da5â~d f !. ~22!

Thus, the quantityL̂EM can be interpreted as the local linear-
ized radiation collision operator. The only nonlocality of the
problem is contained in Eq.~17! in the source functionQEM ,
which is almost the same as used in Ref. 2. It differs only
because of the presence of a convective term corresponding
to the radiation friction force. But this term is rather unim-
portant for the current drive problem under consideration,
because of its symmetry over parallel momentum.

In order to verify the approximation, one has to make
sure that the power fraction radiated at frequencies above the
cutoff frequency is small compared to the total power emit-
ted by the particles from the phase space region mainly re-
sponsible for the losses. It can be presented as

r e5

(M5O,X*0
pdu*

v̄
cut
~M !~u!

`
dv̄ W~M !~ v̄,u!

(M5O,X*0
pdu*0

` dv̄ W~M !~ v̄,u!
, ~23!

whereW(M ) is the power density emitted at a given fre-
quency and wave pitch angle by a single particle,
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W~M !~ v̄,u!5g
e2vce

2

c (
n51

`

sin uv̄2Dn
~M !

3d@n2~g2ui cosu!v̄#. ~24!

Taking into account that most of the losses occur at wave
pitch angles close tou5p/2 and that the corresponding par-
ticle pitch angles are also close tox5p/2, one can set the
cutoff frequency to its value atu5p/2 and consider only the
particles withui50 for estimating the power fraction, Eq.
~23!.

The procedure of making such an estimate is well known
~e.g., see Ref. 17!. One should take into account the overlap-
ping of cyclotron resonances, which allows us to change the
summation over the harmonics to an integration in Eq.~24!.
This integration can be performed by means of thed func-
tion. After substitution of the asymptotical formulas for the
Bessel functions that enter the polarization factorsDn

(M ), the
integration over the wave pitch angle can be performed with
a steepest decent method. The remaining integration over the
frequency in the denominator in Eq.~23! is elementary. In
the nominator one can use the fact that the main contribution
just comes from the neighborhood of the cutoff region and
perform the integration by parts. Finally forr e one obtains

r e'
4

5
A 3

2p

1

g F v̄X
1/2 expS 2

2v̄X

3g22
2v̄X

5g5 D
1

g2

2v̄O
1/2 expS 2

2v̄O

3g22
2v̄O

5g5 D G , ~25!

wherev̄M [ v̄cut
(M )(p/2).

The formula for the absorption coefficient is obtained in
a similar way. The only difference is that the integration is
performed in the electron momentum space. The last integra-
tion over energy can also be performed with a steepest de-
cent method, giving~see Ref. 17!

ap/2
~M !5

3

2
Apm

vpe
2

cvce

1

k
Dp/2

~M !

3expF2mS k1/3211
9

20k1/3D G , ~26!

with Dp/2
(X) 51 andDp/2

(O)51/~mk1/3!. Here

k5
9v̄

2m
5
27

8
g0
3 ~27!

is determined by the position of the saddle point on the en-
ergy axis. This also provides one with the correspondence
between the wave frequency and the energy of the particles
responsible for the emission and absorption at this frequency,

g05S 43 v̄

m D 1/3. ~28!

Using the approximate formula~26!, the equation for the
cutoff frequency~20! can be written as

15L
1

kX
expF2mS kX

1/31
9

20kX
1/3D G , ~29!

15L
1

kO

1

mkO
1/3 expF2mS kO

1/31
9

20kO
1/3D G , ~30!

where

L5
3

2
Apmem

vpe
2

cvce
a@1. ~31!

Since mkO
1/3!L one can writekO5kX1Dk, where

Dk/kX!1. Taking into account Eq.~29!, one obtains

Dk

kX
52

3 ln~mkX
1/3!

mkX
1/3 5

v̄O2v̄X

v̄O
. ~32!

To find out which particles are the most dangerous ones
for the approximation one has to find the ‘‘highest’’ fre-
quency, still giving a sufficient contribution to the losses
from the equation

A5aap/2
~X!5

L

kUX
expF2mS kUX

1/31
9

20kUX
1/3 D G , ~33!

whereA512G is the absorption coefficient at the wall. With
A21!L one can use the same approach as before to obtain

DkU

kX
52

3 ln A

mkX
1/3 , ~34!

where kUX5kX1DkU is the k value for this upper fre-
quency of the extraordinary mode. Using Eq.~34! one can
express the relativistic factorg of the considered particles
through

g5gXS 11
DkU

3kX
D . ~35!

Here gX is given by Eq.~28! with the substitution of the
cutoff frequency of the extraordinary mode.

Expressing in Eq.~25!, the quantitiesg, v̄O , and v̄X

through the quantitykX and using Eq.~29!, for the power
fraction, one finally obtains

r e'
4•31/2

5p1/2

~ ln L!3/2

mL1/3A2/3 expS 2
3m2

10 ln L D . ~36!

As soon as this parameterr e is small, the linearized system
of Eqs. ~15! and ~17! stays to be valid for the problems of
cyclotron losses and passive cyclotron current drive, even
without a sufficient Coulomb relaxation. In Fig. 1 the behav-
ior of the power fractionr e is shown for a typical plasma
with the densityne5231019 m23, m56, and the stationary
magnetic fieldB0510 T for different values of the plasma
sizea. One can see thatr e is more restrictive at high values
of wall reflectivity staying, however, small for realistic re-
flectivity values.

IV. RADIATION COLLISION OPERATOR

Introducing the normalized perturbed distribution func-
tion f̂ as

f̂[
d f

f 0
, ~37!
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and substituting the perturbed intensitydI from Eq.~21!, for
the linearized radiation collision operator, one explicitly ob-
tains

L̂EM d f5
4p2e2

m2c3 (
n52`

` E dK L̂nA

3F L̂n f̂2S E dP AL̂nf̂ D Y S E dP AD G ,
~38!

with the following notation forA

A[An
~M !~u' ,ui ,v,u!

[Dn
~M !

g

v
dS g2

nvce

v
2ui cosu D f 0IRJ. ~39!

This operator preserves the parallel momentum and the total
energy, which can be shown by multiplying Eq.~38! with
eitherg or ui , and subsequent integration over the momen-
tum space. The parity of the distribution function over the
changeui to 2ui is preserved as well.

Let us introduce now a variational principle similar to
the one derived in Refs. 13 and 14 for the linearized Cou-
lomb collision integral. Multiplying Eq.~38! by ĝ and inte-
grating over the electron momentum space, one obtains the
positively definite quadratic integral functional,

KEM~ ĝ, f̂ ![2E d3p ĝL̂EM d f

5
4p2e2

m2c3 E dKF E dP A~ L̂nĝ!~ L̂n f̂ !

2S E dP A~ L̂nĝ! D S E dP A~ L̂n f̂ ! D Y
3S E dP AD G . ~40!

One of the properties of the radiation collision operator is its
self-adjointness with respect to the same scalar product as
the Coulomb collision operator. This follows from the sym-
metry of the functionalKEM ,

KEM~ ĝ, f̂ !5KEM~ f̂ ,ĝ!. ~41!

The positive definiteness ofKEM follows from the Boltz-
mann H theorem, which can be checked by computing the
local rate of entropy production~see, e.g., Ref. 14!,

dS

dt
[KEM~ f̂ , f̂ !

54p2e2m2cE dKE dP

3AF L̂n f̂2S E dP A~ L̂n f̂ ! D Y S E dP AD G2.
~42!

The equilibrium distribution is reached when the entropy
production stops. As one can see from Eq.~5!, the operator
L̂n has the following form:

L̂n5
1

u'

~g2ui cosu!
]

]u'

1cosu
]

]ui

5
]

]g
1cosu

]

]ui
. ~43!

This operator actually does not depend on the indexn and
the frequency~due to thed function!, so the right-hand side
of Eq. ~42! is zero if L̂n f̂ is constant everywhere in the elec-
tron space. But this should be true for allu angles~due to
integration over them!, so the derivatives off̂ overg andui

should be separate constants. This gives one the unique form
of the equilibrium distribution

f̂5C01Cgg1Cpui , ~44!

where all three constants are much smaller than unity, be-
cause of the use of the linearized collision integral. One can
easily see that Eq.~44! is the linear term in the expansion of
a shifted Maxwellian distribution with a modified density
and temperature:

f 0
sh5const expS 2

mc2g2Vipi

~T1DT!A12~Vi /c!2
D , ~45!

whereVi is the velocity of a frame moving along the mag-
netic field line. In such a moving frame the given Maxwell-
ian would be at rest.

The linearized radiation collision operator~38! can be
presented in an invariant form,

S ]d f

]t D
EM

5
1

J

]

]yi
J f0SDi j

] f̂

]yj

2E d3p8 f 08R
i j ~y,y8!

] f̂ 8

]y8 j
D , ~46!

where prime denotes the dependence on a primed argument,
yi[y are the coordinates in the electron momentum space,

FIG. 1. Quantityr e versus the wall absorption coefficient for different val-
ues of the plasma sizea50.3 m ~solid line!; a51.0 m ~dotted line!; and
a53.0 m ~dashed line!.
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andJ5]~p!/]~y! is the Jacobian of the coordinate system. In
the case considered abovey5(u' ,ui) andJ5u'm

3c3. Here
the gyrophasef was omitted because nothing depends on it.
Using Eq.~46! for the bilinear form~40! one can obtain

KEM~ ĝ, f̂ !5E d3p f0
]ĝ

]yi
Di j

] f̂

]yj

2E d3pE d3p8 f 0f 08
]ĝ

]yi
Ri j ~y,y8!

] f̂ 8

]y8 j
,

~47!

where integration overd3p means the general formd3y J.
Performing the integration over the photon phase space vari-
ables in Eq.~40!, one can obtain both the diffusion tensor
and the kernel of the integral part in Eq.~47!.

The shortest form of the diffusion tensor can be obtained
after the summation over cyclotron harmonicsn in a coordi-

nate system using the pitch anglex5arctan (p'/pi) and the
momentum modulep5Ap'

21pi
2 as independent variables:

Dpp5
2e2vce

2 T

3c3
g2 sin2 x, ~48!

Dpx5Dxp5
2e2vce

2 T

3c3p
sin x cosx, ~49!

Dxx5
e2vce

2 T

24c3p2 H 101 3

u2
2S 9

gu
1
3g

u3 D ln~u1g!

2F101 15

u2
2S 21ug

1
15g

u3 D ln~u1g!Gcos2 xJ , ~50!

whereu is the normalized momentum module@see Eq.~4!#.
The most convenient coordinate system for presenting

the kernel in Eq.~47! is in a coordinate system usingg and
ui with the JacobianJ5m3c3g, resulting in

S Rgg8 Rgui8

Ruig8 Ruiui8
D 5

2e2vce
2 K2~m!

mc3nem
2 •

gg8

ugui82g8uiu3 (
M50,X

(
n,n851

`

Dn
~M !Dn8

8~M !Q~12ul0u!unui82n8uiu•ung82n8guS 1 l0

l0 l0
2D

3S (
n951

` E
1

`

dg9 g92e2mg9 Dn9
9~M !Q~g922ui9

221!D 21

. ~51!

Here

l05
ng82n8g

nui82n8ui

, ~52!

ui95
ui8~ng92n9g!2ui~n8g92n9g8!

ng82n8g
, ~53!

where for the polarization factors one has to use Eq.~6! with
u'5(g22ui

221)1/2, ui and g with the number of primes
~0,1,2! corresponding to the number of primes on the polar-
ization factor. The wave pitch angleu entering the polariza-
tion factors given by Eq. ~6!, should be taken as
u5arccosl0.

Using the differential part of the form~38! and the de-
tailed equilibrium principle~each component of the flux is
zero separately for the Maxwellian distributionf̂5const!,
one can obtain the expression for the radiation friction force
as

Fi5Di j
] ln f 0

]yj
52mDi j

]g

]yj
. ~54!

Using Eq.~48! in the initial variablesp' ,pi , one obtains

F'52
2e2vce

2

3mc3
p'

g F11S p'

mcD
2G ,

F i52
2e2vce

2

3mc3
pi

g S p'

mcD
2

, ~55!

which is the same as obtained with direct calculation.18

V. PASSIVE CYCLOTRON CURRENT DRIVE
EFFICIENCY

At this point, the problem of finding the passive current
drive efficiency in a uniform magnetic field can be formu-
lated in a variational form as an adjoint problem of finding
the generalized Spitzer–Ha¨rm distribution function.15,19,20

Although this procedure is well developed for the case of
Coulomb collisions being the only relaxation mechanism, we
briefly repeat this formulation; which now also includes the
collisions due to radiation. This is necessary mainly to
clarify the notation, which is further used, and to introduce
the passive cyclotron current drive efficiency, which is dif-
ferent from the one normally used in the literature. The so-
lution to the problem of finding the minimum of the func-
tional,

Kp~ f̂ ![K~ f̂ , f̂ !22E d3p f̂QEM , ~56!

satisfies at the same time the linearized kinetic equation~17!.
Here f̂ is the normalized perturbed distribution function~37!
andK is a positively definite quadratic functional symmetric
over its arguments,

K~ ĝ, f̂ ![KC~ ĝ, f̂ !1KEM~ ĝ, f̂ !. ~57!

HereKEM is given by Eq.~47!. The corresponding functional
KC for Coulomb collisions is defined as

KC~ ĝ, f̂ ![2E d3p ĝL̂C d f5KC
~e!~ ĝ, f̂ !1KC

~ i !~ ĝ, f̂ !.

~58!
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where the superscriptse and i denote electron–electron and
electron–ion collisions, respectively. Explicitly, one has

KC
~a!~ ĝ, f̂ !5E d3p Da

i j ~y! f 0~y!
]ĝ~y!

]yi
] f̂ ~y!

]yj

2E d3pE d3p8 f 0~y! f 0~y8!Ra~y,y8!

3ĝ~y! f̂ ~y8!. ~59!

As given by Ref. 16, the nonzero components of the
diffusion tensor for the electron–electron collisions have the
following form in p, x variables:

De
pp~p!5

pm4c3Gg

nep
3 S E

0

p

dp8
p8

g8
f 0~p8!@2g2~u8g82s8!

13u8g82~312u82!s8#1E
p

`

dp8
p8

g8
f 0~p8!

3@2g82~ug2s!13ug2~312u2!s# D ,
De

xx~p!5
pm2cGg

nep
3 H E

0

p

dp8
p8

g8
f 0~p8!F2u8g8

2S 1u2 1
1

g2D ~u8g82s8!1
1

2u2g2 @~312u82!s8

23u8g8#G1E
p

`

dp8
p8

g8
f 0~p8!S 2g82

u

g

2u82
1

u2g2 ~ug2s!1
1

2u2g2 @~114g2!s

2~312g2!ug# D J . ~60!

The kernel of the integral part of the electron–electron col-
lision operator has the form

Re~y,y8!5cosx cosx8@R1~p,p8!1R2~p,p8!

1R2~p8,p!#, ~61!

where

R1~p,p8!5
3Gm

negp
2 d~p2p8!, ~62!

R2~p,p8!5
3Gm2c2

nep
2p82gg8 Fu8g82s81

m

2
~5g8s825u8

2u83!1gS m

2
@~512u82!s825u8g8#

1
m2

12
@3u825u832~3316u82!g8s8# D

1u2m~g8s82u8!

1u2g
m2

6
~3u81u8323g8s8!GQ~p2p8!,

~63!

and

G54pnee
4Lee. ~64!

In the formulas ~60! and ~62! u5p/mc, u85p8/mc, g
5A11u2, g85A11u82, s5ln~u1g!, and s85ln~u81g8!.
The electron–ion collisions are well described by the Lor-
entz model because the only important effect is pitch-angle
scattering represented by the diffusion tensor component
Di

xx, given as

Di
xx~p!5

GZimg

2p3
. ~65!

In the integral part of the collision operator~61!, which
is derived in its full form in Refs. 21 and 16, only the first
harmonic of the Legendre expansion of the kernel over the
pitch-angle variable is retained. This, however, permits us to
solve the current drive efficiency problem exactly for the
case of a uniform magnetic field with Coulomb collisions
being the only relaxation mechanism. Also, it continues to be
a good approximation in the case of a nonuniform magnetic
field ~see Ref. 20! or in the case where collisions due to
radiation are taken into account.

Putting the variation of the functional~56! over f̂ to
zero, one obtains the kinetic equation~17!. Therefore, the
minimum function of the functional~56! is the general solu-
tion for the electron equilibrium problem. However, for the
current drive problem the general solution is not necessary.
The only quantity of interest is the parallel current density,

j i5eE d3p d fv i5
e

m E d3p
p cosx

g
f 0~p! f̂ . ~66!

Following Refs. 15 and 19 one can present this quantity in
the form

j i5E d3p ĝQEM , ~67!

where the reduced Green’s-function of the full collision op-
eratorĝ satisfies the generalized Spitzer–Ha¨rm equation,

L̂C~ f 0ĝ!1L̂EM~ f 0ĝ!52ev i f 0 . ~68!

This property follows from the symmetry of the functional
~57! over its arguments. Equation~68! is equivalent to the
minimum condition of the functionalKSH(ĝ) given by

KSH~ ĝ!5K~ ĝ,ĝ!22E d3p ev i f 0ĝ. ~69!

Due to the generality of the functionĝ, one can obtain the
parallel current for any linear current drive method with
power input to the electrons without the explicit solution of
the kinetic equation. However, for the problem considered
here, it is more convenient to introduce the passive cyclotron
current drive efficiency defined as

hv
~M !~u!5

4p2e2

m2c3
m

IRJ
E dP AL̂nĝ, ~70!

with A andL̂n given by Eqs.~39! and~5!, respectively. This
quantity links the parallel current density directly to the ra-
diation intensity through
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j i5E dK hv
~M !~u!Iv

~M !~u,f!, ~71!

thus giving the amount of parallel current produced by the
unit amount of radiation from the unit interval of frequencies
and angles. In this sense, it is completely analogous to the
absorption coefficient~9!. The only difference is that it gives
the current density instead of the absorbed power density.

VI. CURRENT DRIVE EFFICIENCY IN TOROIDAL
GEOMETRY

In order to describe electron kinetics in tokamak geom-
etry, the set of guiding center variables (xi ,yi) is introduced.
The momentum space variablesyi5(p0 ,x0 ,f) are the mo-
mentum module, the pitch angle in the magnetic field mini-
mum on the given magnetic surface, and the gyrophase, re-
spectively. The first two variables are the integrals of motion
expressed through the local values of the momentum module
and the pitch angle,

p5p0 ,
sin2 x

B0
5
sin2 x0

Bmin
, ~72!

whereB0 is the local value of the magnetic field andBmin is
its minimum value on the given surface. The spatial guiding
center variablesxi5~C,q,z! are the normalized poloidal flux
and the poloidal and toroidal angles of the quasitoroidal co-
ordinate system~r ,q,z!, respectively. For the poloidal flux
one has the expression

C5E
0

r

dr8 R~r 8,q!Bq~r 8,q!5C~r ,q!, ~73!

whereR5R01r cosq is the actual value of the big radius,
R0 is its value for the magnetic axis, andBq is the poloidal
physical magnetic field component in quasitoroidal variables.
The Jacobians of momentum space and coordinate space
variables are given as

Jy5p2 sin x0

B0

Bmin

cosx0

cosx
, Jx5

r

Bq
. ~74!

Neglecting the drift motion, the kinetic equation can be cast
to the form

vq
]d f

]q
5L̂C d f1L̂EM d f1QEM . ~75!

Because of the toroidal symmetry, only the poloidal variation
of the distribution function is taken into account in Eq.~75!,
where

vq5
dq

dt
5

p

mg

Bq cosx

B0r

5
p0
mg

cosx0

Bq

rB0
A11S 12

B0

Bmin
D tan2 x0 ~76!

is the poloidal velocity. The collision operators on the right-
hand side of Eq.~75! have a covariant form and can be easily
transformed to the new set of variablesxi ,yi according to the
rules of tensor algebra. Small terms appear in such a trans-
form containing the derivatives over the guiding center po-

sition. They have the order of the ratio of the Larmor radius
to the magnetic field scale and can be safely neglected.

The derivation of Eq.~75! is valid if the collision opera-
tors, as well as the source termQEM obtained for the case of
the uniform magnetic field, are locally valid for the nonuni-
form magnetic field case. The local formula for the electro-
magnetic interaction operator~3! in turn is valid if the cor-
relation time of the radiation electromagnetic fieldDtc ,
which limits the process of wave–particle interaction, is
short enough compared to the time of wave–particle phase
change due to the magnetic field nonuniformity along the
particle trajectoryDtB5(v in dvc/ds)

21/2. Hered/dsmeans
the derivative along the magnetic field line andn is the char-
acteristic number of the cyclotron resonance. The correlation
time is determined mainly by the Doppler broadening of
resonances, which givesDtc5(v invc/c)

21. It is usually
small enough compared toDtB in tokamaks with realistic
parameters for the plasma and the magnetic field.

In the ‘‘collisionless’’ confinement regimenc!vq ~nc is
the collision frequency!, Eq. ~75! can be simplified with the
help of the bounce-averaging procedure. The same result in a
shorter way can be obtained by averaging the functional~56!
over the volume between two neighboring magnetic surfaces
~see Ref. 14!. In order to obtain such an averaged functional,
one has to transform the local momentum space integration
variables to the set of new variablesyi introduced above. In
particular, the functional~57! entering Eq.~56! after this
transformation takes the general form

K~ ĝ, f̂ !5E d3y Jyf 0D
i j

]ĝ

]yi
] f̂

]yj

2E d3yE d3y8 JyJy8 f 0f 08R
i j ~y,y8!

]ĝ

]yi
] f̂

]y8 j

2E d3yE d3y8 JyJy8 f 0f 08R~y,y8!ĝ~y! f̂ ~y8!.

~77!

It should be noted, here, thatDi j , Ri j ~y, y8! andR~y, y8!
contain both Coulomb collisions and collisions due to radia-
tion expressed in the new variablesyi . All the primed quan-
tities in Eq.~77! are the functions of the primed argumenty8.
The average over the layer between two neighboring mag-
netic surfaces is introduced as

^K&5S E
2p

p

dq Jx~C,q! D 21

3E
2p

p

dq Jx~C,q!K~C,q!, ~78!

which is also referred to as the poloidal average. Neglecting
small corrections to the distribution functionsf̂ andĝ, which
come from the dependence onq, and assuming these func-
tions to be continuous and symmetric over cosk0 in the re-
gion of trapped particles p2kb,k0,kb , where
tan2 kb5Bmin/~Bmax2Bmin! andBmax is the maximum value
of the magnetic field on a given surface, one obtains for the
average of the functional~77!,
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^K~ ĝ, f̂ !&5E d3y Jbf 0^D
i j &b

]ĝ

]yi
] f̂

]yj

2E d3yE d3y8 JbJb8 f 0f 08^R
i j ~y,y8!&b

3
]ĝ

]yi
] f̂

]yj
2E d3yE d3y8 JbJb8 f 0f 08

3^R~y,y8!&bĝ~y! f̂ ~y8!. ~79!

Here the quantityJb is defined as

Jb5^Jy&, ~80!

and the bounce-averaged quantities, which are functions of
one argument in the momentum spacey, such as the diffu-
sion coefficients, are given by

^Di j &b5
1

Jb
^JyD

i j &. ~81!

For the bounce-averaged kernels of the integral part of the
collision operators, one obtains the expressions

^Ri j ~y,y8!&b5
1

Jb~y!Jb~y8!
^Jy~y!Jy~y8!Ri j ~y,y8!&

~82!

and

^R&b5
1

Jb~y!Jb~y8!
^Jy~y!Jy~y8!R~y,y8!&. ~83!

Formulas~80!–~83! correspond to the region of passing par-
ticles in the phase space, which is important for the current
drive problem.

Finally the averaged functional~56! takes the form

^Kp~ f̂ !&5^K~ f̂ , f̂ !&22E d3y Jbf̂ ^QEM&b . ~84!

Here the bounce-averaged source^QEM&b is obtained in the
same way as the bounce-averaged diffusion tensor~81!. The
zero variation of this functional corresponds to the bounce-
averaged equation. However, as in the previous section, we
are interested only in the toroidal current density averaged
over the meridian plane area between the cross sections of
two neighboring magnetic surfaces, as given by

^ j t&S5
j i

B0
KBz

R L K 1RL 21

. ~85!

This quantity is expressed through the normalized perturbed
distribution functionf̂ as

^ j t&S5E d3y Jbf 0 f̂ ^W&b , ~86!

where

^W&b5eK v i

B0
L
b
KBz

R L K 1RL 21

5
ep0

3 sin x0 cosx0

JbBminmg0
KBz

R L K 1RL 21

. ~87!

Introducing the generalized Spitzer–Ha¨rm function ĝ that
corresponds to the minimum of the functional

KW~ ĝ![^K~ ĝ,ĝ!&b22E d3y Jbf 0^W&bĝ, ~88!

for the averaged toroidal current density, one has the expres-
sion ~see also Refs. 15 and 19!

^ j t&S5E d3y Jbĝ^QEM&b5 K E d3p ĝQEML . ~89!

The definition of the passive cyclotron current drive effi-
ciency ~70! given in the previous section remains the same,
however, the computation of the averaged toroidal current
density from the radiation intensity now includes the poloi-
dal averaging, as given by,

^ j t&S5 K E dK hv
~M !~u,q!Iv

~M !~u,F,q!L . ~90!

For the purpose of the present research it is convenient
to introduce a simplified model for the efficiency that allows
us to study the effect of particle trapping on cyclotron cur-
rent drive. Assuming that the sourceQEM is independent of
the poloidal angle, one obtains for the current the following
expression:

^ j t&S5E dK^hv
~M !&cyl~u!Iv

~M !~u,F!, ~91!

where

^hv
~M !&cyl5

4p2e2

m2c3
m

IRJ
E dP AL̂n^ĝ&. ~92!

This model is self-consistent with a straight-cylinder model
of a tokamak in which the toroidal nonuniformity is ne-
glected for the radiation problem, so that particle trapping is
the only toroidal effect being included in this model.

VII. NUMERICAL METHOD AND RESULTS OF KINETIC
MODELING

In the present paper a tokamak with concentric circular
magnetic surfaces was chosen for the numerical evaluation
of the Green’s functionĝ. The integral part of the electro-
magnet interaction operator was omitted in the calculation
because it plays the role of a correction term, the order of
1/m compared to the Fokker–Planck part of this operator.

The solution was obtained using the direct variational
method for minimizing the functional~88!.

The generalized Spitzer–Ha¨rm functionĝ was presented
as an expansion over the test functions,

ĝ5(
i50

Np

(
j51

Nx

(
l50

2

j i , j ,lgi , j ,l , ~93!

wheregi , j ,l are the unknown coefficients of this expansion.
The test functions are given as

j i , j ,l~p,x!5Q~p02pi !Q~pi1Dp2p0!~p02pi !
lPj~x0!.

~94!

HereQ is the Heaviside step function,pi5 i •Dp, andDp is
a step in the momentum module.
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The functionsPj ~x! are the odd eigenfunctions of the
equation

1

sin x0K1~e t ,x0!

]

]x0
sin x0K2~e t ,x0!

]

]x0
Pj~x0!

1l j Pj~x0!50, ~95!

which satisfy to the boundary conditions

]Pj~x0!

]x0
U

x050

5
]Pj~x0!

]x0
U

x05p

50, ~96!

Pj~xb!5Pj~p2xb!50, ~97!

in the domain 0,x0,xb , p2xb,x0,p, and equal to zero
in the trapped regionxb,x0,p2xb ~see e.g., Ref. 22!. The
functionsK1 andK2 are defined as

K1~e t ,x0!5~11e t!E
2p

p

dq
cosx0

cosx
, ~98!

K2~e t ,x0!5E
2p

p

dq~11e t cosq!
cosx

cosx0
, ~99!

with e t5r /R0 .
The choice of the angular functionsPj ~x0! is convenient

for the description of the Coulomb collision operator because
they are the eigenfunctions of the pitch-angle scattering
operator.23 In the particular case of a uniform magnetic field
they correspond to the normalized Legendre polynomials.

The minimum condition of the functional~88! and the
additional constraints on the continuity of theĝ function and
its derivative over the momentum module,

Ci j
~1!~gi , j ,l ,gi11,j ,l ![gi , j ,01gi , j ,1 Dp1gi , j ,2 Dp2

2gi11,j ,050, ~100!

Ci j
~2!~gi , j ,l ,gi11,j ,l ![gi , j ,112gi , j ,2 Dp2gi11,j ,150, ~101!

give the linear algebraic equation system for the coefficients
gi , j ,l .

It should be mentioned here that the direct variational
method of obtaining the generalized Spitzer–Ha¨rm distribu-
tion proposed in Ref. 15 is modified here, by using the qua-
dratic splines as the components of the test functions over
the momentum module variable. In Ref. 15 the solution was
obtained in the form of a polynomial expansion, which fails
at the high-energy region of the electron phase space. But
this region is of main importance for the problem considered
in the present paper.

The dependence of the generalized Spitzer–Ha¨rm func-
tion ĝ on the momentum module is presented in Figs. 2 and
3 for two different values of the electron pitch anglex0 in the
case of a uniform magnetic field~et50!. One can see that the
effect of collisions due to radiation~mainly the radiation
friction force! is strong for low-b plasmas with high tem-
perature~m56 corresponds to the temperature close to 80
keV!, where

be5
8pneTe
B0
2 ~102!

is the electron pressure. At a fixed plasma temperature the
ratio between the radiation collision operator and the Cou-
lomb collision operator is inversely proportional tobe . The
depletion of theĝ function in the high-energy region com-
pared to the pure Coulomb relaxation case~be5`! is stron-
ger for pitch angles close top/2. This follows from the an-
isotropy of the radiation collision operator.

The intensity related efficiencyh ~92! was numerically
calculated for the whole range of frequencies and radiation
pitch angles with the help of the previously obtained
Spitzer–Ha¨rm function without the use of the asymptotical
formulas for Bessel functions. The behavior of this quantity
as a function of the radiation pitch angle is shown in Figs. 4

FIG. 2. Theĝ function versus the dimensionless electron momentum. Here
the pitch anglex5p/8; the inverse temperaturem56.0; be5` ~solid line!;
be50.08 ~dash–dotted line!; be50.04 ~long-dashed line!; be50.02 ~short-
dashed line!; andbe50.01 ~dotted line!.

FIG. 3. Theĝ function versus the dimensionless electron momentum. Here
the pitch anglex53p/8; the inverse temperaturem56.0;be5` ~solid line!;
be50.08 ~dash–dotted line!; be50.04 ~long-dashed line!; be50.02 ~short-
dashed line!; andbe50.01 ~dotted line!.
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and 5. Everywhere in the plots the dimensionless wave fre-
quencyv̄5v/vce is used as a parameter.

The quantityhS is calculated without both the integral
part of the Coulomb collision operator and the radiation fric-
tion force. The numerical computation of the quantityhF is
based on the asymptotical formula for the Spitzer–Ha¨rm
functiong5ev i/neff used in Ref. 2, instead of the functionĝ
derived in this paper. Hereneff is the effective collision fre-
quency introduced by Fisch.8

As one can see from Figs. 4 and 5 the values of the
passive cyclotron current drive efficiency given by the exact
model of relaxation are noticeably higher than those given by
the asymptotical model. This is due to the increased role of
the response of the background electrons to the perturbation

of the electron distribution function in the high-energy re-
gion ~the integral part of the Coulomb collision operator! at
relativistic plasma temperatures. This effect is completely
neglected in the asymptotical model. The effect of collisions
due to radiation is obviously important for low-pressure plas-
mas, e.g., forbe50.02 the positive effect of the integral part
is almost canceled by the negative effect of the radiation
friction force. However, atbe50.08 it is already very small.

An interesting fact is, that even without the use of the
integral part of the electron–electron Coulomb collision op-
erator~background response!, one obtains somewhat higher
efficiencies~hS! as compared to those calculated with the
help of the asymptotical formulahF . This is mainly due to
the increased role of diffusion over energy for a relativistic
plasma~see e.g., Refs. 24 and 4!, as well as due to the de-
crease of the pitch-angle scattering coefficient due to thermal
effects. These thermal effects were not taken into account in
the early reference by Fisch9 used in Ref. 2. This effect is
obvious from the formulas~35! of Ref. 16, in which the ratio
of the thermal velocity to the test particle velocity cannot be
considered to be small for relativistic plasmas because both
the nominator and the denominator approach the speed of
light.

The passive current drive efficiencies for the X mode are
roughly five times as high as those for the O mode, finally
resulting in a much higher contribution of the X mode to the
passively generated plasma current. This follows from the
well-known fact of the X mode being the main contributor to
the cyclotron power loss.

For a more detailed comparison with the results of Ref.
2, the ratio of the efficiencyh and the absorption coefficient
a is plotted in Fig. 6. This ratio—G—was introduced in Ref.
2 and then used in Refs. 3–5. The results were again calcu-
lated for the different models of relaxation. One should note
that the agreement between the approximate formula for

FIG. 4. Passive current drive efficiencies for the X mode as given by dif-
ferent calculation models versus wave pitch angleQ. Herem56.0; v̄57.5;
et50.0; h for be5` ~dash–dotted line!; h for be50.08 ~solid line!; h for
be50.02 ~dotted line!; hS ~short-dashed line!; andhF ~long-dashed line!.

FIG. 5. Passive current drive efficiencies for the O mode as given by dif-
ferent calculation models versus wave pitch angleQ. Herem56.0; v̄57.5;
et50.0; h for be5` ~dash–dotted line!; h for be50.08 ~solid line!; h for
be50.02 ~dotted line!; hS ~short-dashed line!; andhF ~long-dashed line!.

FIG. 6. Ratio between absorption coefficient and current drive efficiency
G5a/h for the X mode as given by different calculation models versus
wave pitch angleQ. Herem56.0; v̄57.5; et50.0; h/a for be50.08 ~solid
line!; h/a for be50.02 ~dotted line!; hS/a ~short-dashed line!; hF/a ~long-
dashed line!; andhFA/a ~dashed-dotted line!.
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G5hFA/a given in Ref. 2 and its equivalent using Fisch’s
asymptotical relaxation modelhF/a is very good in the range
of the radiation pitch angleU'40° of main interest for that
study. In addition to this, it has to be noted that the behavior
of this ratioh /a is very similar for the X and the O mode.

In Fig. 7 the influence of the toroidicity on the current
drive efficiency is demonstrated. One may notice that this
influence is not very dramatic. However, even for small val-
ues of the inverse aspect ratioet it is not negligible. It results
both from the rapid decrease of the additional current pro-
duced by the response of background electrons and from the
increase of the momentum loss cone in the phase space cor-
responding to the region of trapped particles~see, e.g., Refs.
22, 24, and 25!.

In order to clarify the role of the loss cone, the calcula-
tions were performed with the asymptotic Fisch formula~see
above! in which the loss cone region was excluded from the
momentum space integration. The results for this quantity
are presented in Fig. 8. One can easily see that this effect
alone does not produce such a dramatic decrease.

Finally, in Fig. 9 the behavior of the efficiency in a
D–3He plasma with different concentrations of3He is
shown. In changing the3He concentration, the electron pres-
sure is kept constant. The study of the dependence of the
efficiency on the3He concentration shows a somewhat stron-
ger dependence on the effective charge number than the 1/~5
1Z! law. This comes from the fact that the behavior of the
integral part of the collision operator, which plays a positive
role for the current efficiency, has a somewhat different scal-
ing with the charge number. The decrease of the current with
the charge number, however, is not dramatic. That leaves the
mechanism under consideration to be of interest for a future
D–3He reactor.

VIII. CONCLUSIONS

The main feature of the present study of the passive
cyclotron current drive efficiency is the account of the fol-

lowing effects: Response of the background electrons; the
effect of ‘‘collisions’’ due to radiation~mainly the radiation
drag!; and the effect of toroidicity.

Most of these effects~except the diffusion of particles in
the velocity space due to ‘‘thermal’’ radiation! were ac-
counted for in earlier studies of other methods of current
drive. However, they were not considered in the case of pas-
sive cyclotron current drive. The computer modeling of the
passive cyclotron current drive efficiency is performed in the
present paper without asymptotical approximations for the
Spitzer–Ha¨rm function and the quasilinear operator. It shows
that all three effects have an important influence on the pas-
sive cyclotron current drive efficiency. So, all three effects
should be taken into account for a self-consistent modeling
of passive current generation. The results of such a

FIG. 7. Influence of toroidicity on the passive current drive efficiencyh for
the X mode. Herem56.0; v̄57.5; be50.02; et50.0 ~solid line!; et50.1
~dotted line!; et50.2 ~dashed line!; andet50.3 ~dash–dotted line!.

FIG. 8. Influence of toroidicity on the passive current drive efficiencyh for
the X mode. Here the asymptotical approach for the Coulomb collision
operator was used. Herem56.0; v̄57.5; et50.0 ~solid line!; et50.1 ~dotted
line!; et50.2 ~dashed line!; andet50.3 ~dash–dotted line!.

FIG. 9. Influence of3He concentration on the passive current drive effi-
ciency. Herem56.0; v̄57.5; be50.08; et50.0; n3He/nD 5 0.0 ~solid line!;
n3He/nD 5 0.25~dotted line!; n3He/nD 5 0.5~dashed line!; andn3He/nD 5 1.0
~dash–dotted line!.
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modeling6,7 show that the absolute value as well as the cur-
rent density profile are strongly influenced by these effects.

ACKNOWLEDGMENTS

The authors would like to thank Professor K. N.
Stepanov for valuable discussions.

This work was supported by the Austrian Academy of
Sciences, the International Atomic Energy Agency, and the
Styrian Government. One of the authors, S. V. Kasilov, ac-
knowledges the financial support from the Technische Uni-
versität Graz and the hospitality at the Institut fu¨r Theore-
tische Physik during his scientific visit to Graz.

1J. Dawson and P. K. Kaw, Phys. Rev. Lett.48, 1730~1982!.
2I. Fidone, G. Granata, and J. Johner, Phys. Fluids31, 2300~1988!.
3J. Johner and I. Fidone, Nucl. Fusion29, 449 ~1989!.
4G. Giruzzi and I. Fidone, Nucl. Fusion29, 2235~1989!.
5I. Fidone, Phys. Fluids B5, 3825~1993!.
6W. Kernbichler and S. Kasilov, Trans. Fusion Technol.27, 423 ~1995!.
7W. Kernbichler and S. Kasilov, Phys. Plasmas3, 4128~1996!.
8N. Fisch, Phys. Rev. A24, 3245~1981!.
9N. Fisch and A. Boozer, Phys. Rev. Lett.45, 720 ~1980!.

10A. Akhiezer, V. Aleksin, V. Bar’yakhtar, and S. Peletminskii, Sov. Phys.
JETP15, 386 ~1962!.

11A. Akhiezer, V. Bar’yakhtar, and S. Peletminskii, Sov. Phys. JETP16,
1231 ~1963!.

12S. Peletminskii, Sov. Phys. JETP17, 497 ~1963!.
13B. Robinson and I. Bernstein, Ann. Phys.18, 110 ~1962!.
14M. Rosenbluth, R. Hazeltine, and F. Hinton, Phys. Fluids15, 116 ~1972!.
15S. Hirshman, Phys. Fluids23, 1238~1980!.
16B. Braams and C. Karney, Phys. Fluids B1, 1355~1989!.
17B. Trubnikov and A. Bazhanova, inPlasma Physics and the Problem of
Controlled Fusion, edited by M. Leontovich~Academy of Sciences USSR,
Moscow, 1958!, Vol. III, pp. 121–147~in Russian!.

18L. Landau and E. Lifshitz,Theoretical Physics~Nauka, Moscow, 1988!,
Vol. II, Field Theory ~in Russian!.

19T. Antonsen and K. Chu, Phys. Fluids25, 1295~1982!.
20C. Karney, N. Fisch, and A. Reiman, inRadiofrequency Power in Plas-
mas, 8th Topical Conference. Irvine, CA, 1989, edited by R. McWilliams
~American Institute of Physics, New York, 1989!, pp. 430–433.

21B. Braams and C. Karney, Phys. Rev. Lett.59, 1817~1987!.
22R. Cohen, Phys. Fluids30, 2442~1987!.
23J. Killeen, G. Kerbel, M. McCoy, and A. Mirin,Computational Methods
for Kinetic Models of Magnetically Confined Plasmas~Springer-Verlag,
Berlin, 1987!.

24G. Giruzzi, Phys. Fluids31, 3305~1988!.
25G. Giruzzi, Nucl. Fusion27, 1934~1987!.

4127Phys. Plasmas, Vol. 3, No. 11, November 1996 S. V. Kasilov and W. Kernbichler

Downloaded¬15¬Oct¬2002¬to¬129.27.161.63.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/pop/popcr.jsp


