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Solution of the drift kinetic equation in the regime of weak collisions
by stochastic mapping techniques
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A new method for solving the drift kinetic equation applicable for non-integrable particle motion is
presented. To obtain this goal, the general form of the drift kinetic equation is reduced to a
stochastic mapping equation which is valid in the weak collisions regime. This equation describes
the evolution of the distribution function on Poincare´ cuts of phase space. The proposed Monte
Carlo algorithm applied to the stochastic mapping equation turns out to solve the drift kinetic
equation much faster than a direct integration of stochastic orbits. It can be applied to study
quasilinear effects of radio frequency heating and transport in systems with complex magnetic field
geometries such as stellarators, tokamaks with toroidal magnetic field ripples, or ergodic divertors.
For systems with axial space symmetry the stochastic mapping equation is shown to reduce to the
well-known canonical~bounce! averaged equation. For nonaxisymmetric magnetic fields the bounce
averaged equation for trapped particles is recovered. ©1997 American Institute of Physics.
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I. INTRODUCTION

In studies of plasma confinement and heating in m
netic traps one needs to know the evolution of the ‘‘unp
turbed’’ part of the particle distribution function whic
evolves on a slow time scale of the order of collision time
even longer. This function satisfies the drift kinetic equat
including quasilinear contributions from different rf heatin
mechanisms and possible sources and sinks in phase s
due to beam injection, etc. The high dimensionality of t
problem makes it difficult to solve it in a straightforwar
way with regular methods without the reduction of the
mensionality. However, such a reduction is not always p
sible, and therefore Monte Carlo~MC! methods1–10 which
are much less sensitive with respect to number of dimens
are used.

In the case of weak collisions, a direct application of t
MC method to the solution of this drift kinetic
equation,1,2,5,8–10i.e., the modeling of stochastic guiding ce
ter trajectories, suffers from the need to cover simultaneou
two different time scales, the ‘‘fast’’ bounce time corr
sponding to unperturbed motion which enters the equa
through a dynamic convection term, and the ‘‘slow’’ coll
sional relaxation time which is determined by ‘‘collisional
terms, i.e., the Coulomb collision integral, the quasiline
diffusion operator, and sources and sinks. The time step
the MC integration has to be much smaller than the bou
time, whereas the total integration time should be mu
larger than the collisional relaxation time or, even worse,
transport time in the case of balance-type problems, in
context being defined as problems which require the com
tation of the distribution function in the whole phase space
contrast to the problem of computing the transport coe

a!Electronic mail: heyn@itp.tu-graz.ac.at
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cients when the kinetic equation can be solved only loca2

and, at the same time, linearization can be used.9,10 As a
consequence, the problem becomes numerically stiff.
cause of this stiffness, balance-type problems, such as
modeling of minority ion distributions during cyclotro
heating,5,8 can be solved with direct methods only with th
help of supercomputers. In the case of an exactly or appr
mately integrable system for free particle motion, the st
ness problem can be resolved by averaging the kinetic e
tion over canonical angles and, at the same time, the num
of dimensions can be reduced to the number of the remain
canonical action variables11 or to the equivalent noncanon
cal integrals of motion. For systems with axial symme
such as tokamaks these invariants are the total energy, m
netic moment, and generalized toroidal moment, where
first and the last one are preserved exactly.

For systems with broken symmetry such as stellara
or tokamaks with toroidal magnetic field ripples, the toroid
moment is not preserved anymore. However, the dynam
will be still approximately integrable if one exploits the di
ference in time scales for the motion across the magn
field ripples and the poloidal revolution to perform ripp
~trapped-bounce! averaging. In particular, for trapped pa
ticles the difference in bounce time and time of trapped o
drift as a whole can be used to remove the rapid bou
motion from the equation for these particles by averag
over the fast bounce phase, see, e.g., Refs. 3 and 4. In
case, the relatively slow drift motion which preserves t
‘‘parallel’’ adiabatic invariant survives averaging.

Even more approximate similar procedures applied
passing particles in stellarators~to this set also the toroidally
trapped particles are counted for in the stellarator literatu!,
namely averaging the kinetic equation over helic
ripples,12,13 also relaxes the stiffness of the problem in r
7)/2422/14/$10.00 © 1997 American Institute of Physics
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moving rapid oscillations of particle phase space coordina
associated with the ripples. Here, the difference between
time to pass a single ripple and the period of poloidal mot
or, in other words, the smallness of rotational transform
one ripple, is used. The adiabatic invariant associated w
this double time scale14,15 demonstrates the integrability o
motion also in this case.

MC algorithms based on the bounce and canonically
eraged equations3,4,6,7 are much more effective than dire
methods because the step size of time integration of the
chastic orbits in averaged methods is much larger than
bounce time. For axially symmetric systems, together w
canonical averaging, often methods are used which are
based on a Hamiltonian formalism, see, e.g., Ref. 16.
cause the resulting equation is basically the same, in
context of this paper the term ‘‘canonical averaging’’ will b
used for all such approaches which completely remove
unperturbed motion from the equation. They are also of
referred to as ‘‘bounce averaging,’’ however, this term w
be used here for those methods where only the avera
over parallel bounce motion is performed. The maximu
efficiency is gained in canonically averaged methods wh
just the collision time scale has to be met.

Note that the stiffness is not completely removed
bounce or ripple-averaging. The ripple-averaged equat
have a stiffness similar to the tokamak problem. For bou
averaged motion of trapped particles in the case of very
collisions, the time scale of particle drift may also becom
much shorter than the collision time and again a stiffn
problem appears. The further reduction of stiffness is p
sible if one makes use of the parallel or ripple invariants
order to make the system fully integrable. This is a som
what demanding task because the invariant surfaces are
plex and there also exist transiting particles for which
invariants are not preserved all the time and one has to
culate appropriate transition probabilities.14,15 Note that the
need of transition probabilities already appears in the ripp
averaged equations irrespective of further averaging. On
other hand, ripple averaging requires the existence of ne
flux surfaces as well as the equivalence of all helical ripp
But this might be destroyed, e.g., when magnetic island
ergodic layers are present in the configuration or by a lo
ized heating of the plasma with rf heating methods.

Therefore, it is desirable to develop a general proced
in which the computer time for modeling the regular partic
motion is minimized down to the amount actually requir
for modeling the stochastic process and, at the same t
allows one to treat cases with destroyed magnetic surfa
and dynamically unstable orbits.

In the present paper a procedure based on Poincare´ map-
ping techniques is proposed which seems to meet all
goals discussed. It takes full advantage of the mapping
cedure describing the unperturbed motion and, at least in
ideal case, one mapping step is sufficient to cover any
sired time interval. For purely deterministic motion the
techniques are well established in fusion studies, e.g.
modeling of magnetic surfaces17 or cyclotron heating in non-
uniform magnetic fields.18,19Also, stochastic processes ha
been included in simple models using some kind of mapp
Phys. Plasmas, Vol. 4, No. 7, July 1997
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procedure.20 The method proposed in the present paper
lows for a rigorous account of stochastic diffusion proces
during the mapping in realistic magnetic field geometries a
weakly collisional plasmas.

The structure of the paper is the following. In Section
using exact constants of motion, a Poincare´ map is con-
structed and, with its help, for the regime of weak collisio
a stochastic mapping equation~SME! for the particle flux
density through the Poincare´ cuts is derived. In a first step
single-pass mapping is considered. In Section III a Mo
Carlo algorithm is introduced which is able to solve t
problem much faster than any method based on direct i
gration of the stochastic particle orbits. In Section IV it
shown how to compute the map-associated diffusion coe
cients. In Section V, based on the single-pass SME, a m
pass stochastic mapping procedure is developed. The
ciency of the Monte Carlo algorithms based on th
multipassing procedure is close to the efficiency of cano
cally averaged methods. In Section VI expressions for av
aged quantities in terms of the solution of the SME a
given. In Section VII the SME is simplified for the phas
space regions of trapped particles and the result is show
be equivalent to the bounce averaged equation. For sys
with axial space symmetry the canonically averaged equa
is recovered from the SME and validity conditions for th
full canonical averaging procedure are discussed. Finally,
results are discussed and summarized in the concluding
tion.

II. SINGLE-PASS MAPPING

In kinetic theory, the dynamics of the distribution fun
tion f (t,z) in any system of dynamical variablesz invertibly
related to Cartesian variables (r ,p) obeys the equation

] f

]t
1Va

] f

]za 5
1

J

]

]za JSDab
] f

]zb 2Fa f D2n0f1Q,

a51•••6. ~1!

Here,Va is the phase space velocity of dynamic convectio
Dab andFa are the components of the~properly transformed
contravariant! collisional diffusion tensor and friction force
including quasilinear contributions from the interaction wi
the waves, 1/n0 is the particle lifetime due to inelastic pro
cesses,Q represents possible sources and sinks in ph
space, andJ is the Jacobian of the transformation from Ca
tesian variables (r ,p) to some general new variable
z[(x,y) in 6-D phase space,

J5
]~r 1 ,r 2 ,r 3 ,p1 ,p2 ,p3!

]~x1,x2,x3,y1,y2,y3!
. ~2!

For studies of processes with length and time scales m
larger than the gyroradius and inverse gyrofrequency, an
propriate choice for the dynamical variables (x,y) are guid-
ing center variables. For the method developed below i
convenient to use the formulation introduced in Refs. 21 a
22, i.e., guiding center variables such that the resulting s
tem conserves energy and phase space volume ex
~Hamiltonian system!. On the other hand, the parallel guid
ing center world velocityU i and magnetic momentm used
2423Kasilov, Moiseenko, and Heyn
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in Ref. 22 are not very convenient to deal with the Coulom
collision operator. Therefore some new variab
y5(p,l,f) implicitly defined through

U i5
pl

m0
, m5

p2~12l2!

2m0B
, Q5f, ~3!

will be used wherem0 is the rest mass andf the gyrophase.
One should note that the variablesp and l defined in this
way are not the actual particle momentum moduleupu and
pitch angle cosineB•p/uBuupu but may differ from them by
first-order terms in the guiding center expansion. Howev
this difference can be neglected when used in the collis
term because this effect itself is of higher order.

Let R be the guiding center position in Cartesian co
dinates andx5(x1,x2,x3) be its position in some genera
curvilinear space coordinate system. Then the Jacobian~2!
becomes

J5JxJy , Jx[Ag5detS ]Ri

]xj D ,
~4!

Jy5
]~p,r !

]~y,R!
5
Bi* ~z!

B~x !
p2,

where22,23

Bi* ~z!5
BiB*

i

B
, B* i5Bi1

c

e

pl

Ag
« i jk

]

]xj SBk

B D . ~5!

Here,e, c, Bi , andBi , are particle charge, speed of ligh
contra and covariant components of the magnetic field,
spectively, and« i jk is the completely antisymmetric unit ten
sor ~Levi-Civita symbol!.

Introducing the relativistic factor, cyclotron frequenc
and parallel velocity,

g5A11
p2

m0
2c2

, vc5
eB

m0cg
, v i5

lp

m0g
, ~6!

the system governing the dynamics of ‘‘free’’ particle m
tion in stationary electric and magnetic fields becomes,

d

dt
xi5Vi5vg

i , i51,...,3, ~7!

d

dt
p5V452em0

g

p
vg
i ]w

]xi
, ~8!

d

dt
l5V552

12l2

l S em0

g

p2
vg
i ]w

]xi
1
1

2
vg
i ] ln B

]xi D , ~9!

d

dt
f5V652vc , ~10!

with the contravariant guiding center velocity given by

vg
i 5

1

Bi*
S v iB* i1« i jk

cBj

BAg
S ]w

]xk
1

m

eg

]B

]xkD D . ~11!

Here,w is the electrostatic potential andv i as well asm are
to be expressed throughp andl using ~6! and ~3!, respec-
tively.
2424 Phys. Plasmas, Vol. 4, No. 7, July 1997
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In the particular case of a tokamak with circular conce
tric magnetic surfaces, a convenient choice of space coo
nates xi is quasitoroidal coordinatesxi5(z,r ,q), where
z,r ,q are the toroidal angle, the small radius, and the polo
dal angle~see Fig. 1!. For this set of coordinates

Jx5rR, R5R01r cosq, ~12!

whereR0 is the big radius of the magnetic axis.
In the following it will be convenient to use such a sys

tem of space variables (x1,x2,x3[q) in which one magnetic
field component, sayBq, is positive definite everywhere in
the considered volume. Below it will be shown how th
problem can be discretized with respect to this coordinate.
the tokamak geometry introduced above, the poloidal an
x35q will serve for this purpose. Defining the remaining se
of variables byu5(x1,x2,p,l), the interesting subset of
equations of motion~7!–~10! can be written as

d

dt
q5V~q,u !,

d

dt
ui5wi~q,u !, i51,...,4. ~13!

Clearly, the system is Hamiltonian and obeys Liouville
theorem,

1

J

]

]za JV
a5

1

JS ]

]q
JV1

]

]ui
Jwi D50. ~14!

Let the flow, i.e., the set of trajectories for all possibl
initial conditions, generated by vector field (V,w) of ~13! be
denoted by

q5Q~t,q0 ,u0!, Q~0,q0 ,u0!5q0 ,
~15!

ui5Ui~t,q0 ,u0!, Ui~0,q0 ,u0!5u0
i ,

such that

FIG. 1. Quasitoroidal coordinate system.
Kasilov, Moiseenko, and Heyn
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]

]t
Q~t,q0 ,u0!5V~Q~t,q0 ,u0!,U~t,q0 ,u0!!,

~16!
]

]t
Ui~t,q0 ,u0!5wi~Q~t,q0 ,u0!,U~t,q0 ,u0!!.

Obviously, solutions~15! of the equations of motion satisf
the group property

Q~t1 ,Q~t2 ,q0 ,u0!!5Q~t11t2 ,q0 ,u0!,
~17!

U~t1 ,U~t2 ,q0 ,u0!!5U~t11t2 ,q0 ,u0!.

With the help of these trajectories, Poincare´ maps will be
constructed with respect to hypersurfaces in phase spac
the initial values (q0 ,u0) in ~15! are restricted to lie within
a hypersurface~labeled bym! of phase space defined throug
the relation

q2q~m!~u !50, ~18!

with some functionq (m)(u) such that the integral lines o
~13! always intersect the surface with a finite angle, i.e.,
surface should be transverse to the vector field (V,w) every-
where, it is possible to introduce a set of Lagrangian ty
variables (t,um) related to the old variables (q,u) by

q5Q~t,q~m!~um!,um![Q̂~t,um!,

Q̂~0,um!5q~m!~um!,
~19!

ui5Ui~t,q~m!~um!,um![Û i~t,um!, Û i~0,um!5um .

Note that subscriptm is not a covariant index but indicate
the new set of variables related to the hypersurface w
numberm.

From the group property~17!, it follows

q~m!~um!5Q~2t,q,u !,
~20!

um
i 5Ui~2t,q,u !.

Through the coordinates change from (q,u) to (t,um),
the contravariant velocity is rectified, i.e.,Vm

a 5(1,0,0,0,0)
and the equations of motion simply become

dt

dt
51,

dum
i

dt
50. ~21!

The complete Jacobian from Cartesian to Lagrang
variables is

Jm~t,um![J~q,u !
]~q,u !

]~t,um!
. ~22!

Evaluating this expression in the limitt→0 and taking into
account~19! and ~16!, it follows for the Jacobian,

Jm5J~q~m!~um!,um!S V~q~m!~um!,um!

2wi~q~m!~um!,um!
]q~m!

]um
i D , ~23!

valid for arbitraryt because from Liouville’s theorem~14!,
the Jacobian must be independent ont,
Phys. Plasmas, Vol. 4, No. 7, July 1997
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]

]t
Jm50. ~24!

On the other hand, as sketched in Appendix A, the
locity flux through the area elementd4um of the hypersurface
~18! is given by

Va~dS!a5JVa
]

]za ~q2q~m!~u !!U
u5um

dum
1 •••dum

4

5JS ]

]t
~Q̂~t,um!2q~m!~Û~t,um!!! D U

t50

3dum
1 •••dum

4 5Jmdum
1 •••dum

4 . ~25!

Therefore, the Jacobian is identical to the velocity flux de
sity through the hypersurface and will be nonzero if the s
face is never tangent to the characteristics of the kin
equation. This, in turn, is the definition of such a hypers
face which will be used as a Poincare´ cut for discretization of
the unperturbed particle motion. The choice of this surfac
not unique and the envisaged geometry should be a guid
finding a topology as simple as possible. For systems w
limited particle motion in phase space, e.g., magnetic tra
the number of Poincare´ cuts necessary to cover all partic
populations is finite, saymmax. Subscriptm will be used to
number these cuts, such thatm is increasing in the direction
of the magnetic field and is periodic with the periodmmax,
m1mmax→m, i.e., the cut with numberm1mmax is the same
as the cut with numberm. For magnetic traps without sta
tionary parallel electric field, a good choice for the hypers
face is magnetic field minimum surfaces defined by

B~r !•¹B~r !5Bi~x !
]B~x !

]xi
50. ~26!

Such a Poincare´ cut imposes no restrictions on momentu
space variables.

For example, for the tokamak model introduced abo
just one surface is sufficient if the equatorial cross sect
defined byq50 ~see Fig. 1! is used, i.e., the period is
mmax51. In the lowest-order guiding center approximatio
the Jacobian turns out to be

Jm5hqp2rRv i5
B^q&

B
p3R

l

gmU
q50

, ~27!

whereB^q& is the physical poloidal component of the ma
netic field and the values

um
1 5r , um

2 5z, um
3 5p, um

4 5l ~28!

have to be taken on the Poincare´ cutm51.
In the new variables (t,um), the kinetic equation~1!

becomes
2425Kasilov, Moiseenko, and Heyn
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] f

]t
5

]

]t SDm
tt ] f

]t
1Dm

t j ] f

]um
j 2Fm

t f D
1

1

Jm

]

]um
i JmSDm

i t ] f

]t
1Dm

i j ] f

]um
j 2Fm

i f D 2
] f

]t

2n0f1Q, ~29!

where the components of collisional diffusion tensor an
friction force have to be transformed according to the rul
of tensor algebra,

Dm
i j ~t,um!5 c̄ k

i c̄ l
jDkl~q,u !, ~30!

Fm
i ~t,um!5 c̄ k

i Fk~q,u !. ~31!

with the transformation matrix given by@zi[(q,u)#

c̄ k
t5

]t

]zk
, c̄ k

i 5
]um

i

]zk
, i51,... ,4. ~32!

Let a ‘‘bounce’’ timetb(um) ~time for the transition of the
particle from the initial Poincare´ cutm to the next Poincare´
cutm8 the particle hits on its path! be defined as the smalles
positive root of the equation

qm8~Û~t,um!!5Q̂~t,um! ~33!

with respect tot variable. The particles can now be groupe
into three classes with respect to the mapping from the
m to the cutm8. The corresponding orbits of co-passin
particles withm85m11, counter-passing particles withm8
5m21, and particles reflected from the magnetic mirro
with m85m are shown in Fig. 2. In the present context, an
particle which is reflected by the magnetic field mirror be
tween neighboring Poincare´ cuts will be called trapped. This
definition also includes particles trapped in the usual sen
i.e., those returning to the same cut twice without interse
ing the neighboring cuts. They will be referred to as ‘‘strictl

FIG. 2. Different types of particle trajectories. On top pointing to the right
copassing orbit, next two different trapped orbits, at the bottom pointing
the left a counterpassing orbit. The surfacesm21, m, andm11 are Poin-
carécuts. The surfacesm21/2 andm11/2 indicate separatrix surfaces.
2426 Phys. Plasmas, Vol. 4, No. 7, July 1997
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trapped’’ particles and their oscillation period is twice th
‘‘bounce’’ time defined above. In stellarator literature, ofte
just that type of particles are called trapped while the ot
kinds of trapped particles are referred to as passing. A
shown in Fig. 2 are hypersurfaces which divide the ph
space into regions containing trapped particles with start
end points on the same Poincare´ cut m. These surfaces ar
numbered with indexm61/2 and all trapped particles whos
coordinateu satisfiesqm21/2,q,qm11/2 belong to the cut
m. For the case of zero parallel electric field, these surfa
up to zero order in the drift approximation coincide wi
magnetic field maximum surfaces which also satisfy~26!.

The variables (t,um) associated with the Poincare´ cut
m are related to the variables (t8,um8) of the aligned Poin-
carécutm8 as

t85t2tb~um!, ~34!

um8
i

5Û i~tb~um!,um![Ûm
i ~um!. ~35!

With the help of functions~35!, the unperturbed motion on
time scales long compared to the bounce time can be
placed by the mapping from one Poincare´ cut to another and
thereby discretized. In the particular case of a tokamak,
set of mapping functions for passing particlesÛm

i with the
definitions~28! becomes

rm85Ûm
1 ~um!5rm , ~36!

zm85Ûm
2 ~um!5zm12pq sgnlm1Dz~lm ,pm ,rm!,

~37!

pm85Ûm
3 ~um!5pm , ~38!

lm85Ûm
4 ~um!5lm . ~39!

Here,q is the safety factor andDz is the toroidal orbit shift
due to electric and magnetic drift per mapping. For bana
particles the mapping over toroidal angle is given by~37!
without the second term in the right-hand side, while the r
of the mapping functions have a more complicated form
cause only half of the rotation period along the banana o
corresponds to the ‘‘bounce’’ time. However, after two ma
pings they again satisfy

Û i
m~Um~um!!5um

i , i51,3,4. ~40!

Integrating the kinetic equation~29! over a bounce pe-
riod leads to

f ut5tb
Jm2 f ut50Jm5FDm

tt ] f

]t
1Dm

t j ] f

]um
j 2Fm

t f G
t5tb

Jm

2FDm
tt ] f

]t
1Dm

t j ] f

]um
j 2Fm

t f G
t50

Jm

2
]tb
]um

i FDm
i t ] f

]t
1Dm

i j ] f

]um
j 2Fm

i f G
t5tb

Jm

1
]

]um
i JmE

0

tb
dtSDm

i t ] f

]t
1Dm

i j ] f

]um
j 2Fm

i f D

o

Kasilov, Moiseenko, and Heyn
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1JmE
0

tb
dtS 2

] f

]t
2n0f1QD . ~41!

Equation~41! can be more compactly written introducing th
particle flux densityGm through thed

4um element of the four
dimensional~4-D! surface of the Poincare´ cut,

Gm[JmF f2Dm
tt ] f

]t
2Dm

t j ] f

]um
j 1Fm

t f G
t50

, ~42!

which is just the sum of all contributions fromt50 in ~41!.
The Jacobian of variables~34! and ~35! expressed

throughJm is

Jm85Jm
]~t,um!

]~t8,um8!
5Jm

]~um!

]~um8!
. ~43!

The distribution function transforms as a scalar (f 85 f for
the same physical point!, while the diffusion flux density
transforms as a contravariant vector,

Fm8
t8 f 82Dm8

t8t8 ] f 8

]t8
2Dm8

t8 i ] f 8

]um8
i

5Fm
t f2Dm

tt ] f

]t
2Dm

t i ] f

]um
i

2
]tb
]um

i S Fm
i f2Dm

i t ] f

]t
2Dm

i j ] f

]um
j D . ~44!

Therefore, the sum of contributions fromt5tb(um) in ~41!
is the particle flux density through the cutm8 expressed in
variables associated with the cutm. As a result,~41! may be
cast into the short form

Gm8~ t,um8!
]~um8!

]~um!
2Gm~ t,um!

5
]

]um
i JmE

0

tb
dtSDm

i t ] f

]t
1Dm

i j ] f

]um
j 2Fm

i f D
1JmE

0

tb
dtS 2

] f

]t
2n0f1QD , ~45!

whereum8 is connected toum by the mapping~35!.
Compared to the bounce time, diffusion processes ha

much longer time scale,nctb!1, and the dependence of th
distribution function ont in the right-hand side of~29!, re-
spectively ~45!, can be neglected when moving from on
Poincare´ cut to the next. By the same order of magnitud
this is also true for the collision terms in the flux dens
~42!, i.e.,

Gm'Jmf . ~46!

Introducing the notation for the quantities integrat
along the orbit over one bounce period as

Ā~um![E
0

tb
dtA~t,um!, ~47!

the following difference-differential equation for the flu
density is obtained,
Phys. Plasmas, Vol. 4, No. 7, July 1997

ownloaded¬11¬Jul¬2001¬to¬129.27.161.66.¬Redistribution¬subject¬to¬A
a

,

Gm8~ t,um8!
]~um8!

]~um!

5Gm~ t,um!1
]2

]um
i ]um

j D̄m
i j ~um!Gm~ t,um!

2
]

]um
i F m

i ~um!Gm~ t,um!2tb~um!
]

]t
Gm~ t,um!

2 n̄0~um!Gm~ t,um!1Q~um!, ~48!

with the variablesum8 related toum by ~35!. Here, effective
forceF and sourceQ are defined as

F m
i ~um!5F̄m

i ~um!1
1

Jm

]

]um
j JmD̄m

i j ~um!, ~49!

Q5JmQ̄~um!. ~50!

If slow diffusion processes are considered, the conti
ous time derivative in~48! can be replaced by a finite differ
ence quotient and time can be just considered as an a
tional mapping variable,t5tm , which transforms as

tm85tm1tb~um!. ~51!

Finally, ~48! can be cast into operator form,

G5M̂G1ST , ~52!

where, neglecting terms quadratic innctb ,

M̂5M̂ ~L !M̂ ~T!M̂ ~D !~12 n̄0!. ~53!

The integral operatorM̂ (L) describes the unperturbed ma
ping in phase space,

M̂ ~L !Gm~ tm8,um!5Gm8~ tm8,um8!

[ (
m5m821,m8,m811

E d4um

3M ~L !~um8,um!Gm~ tm8,um!. ~54!

The kernelM (L) is

M ~L !~um8,um!5Dm8~um!d~um82Ûm~um!!, ~55!

with Ûm given by ~35!. The quantityD formally defines the
groups of particles with respect to the mapping

Dm85H dm8,m11 , for co-passing,

dm8,m21 , for counter-passing,

dm8,m , for trapped.

~56!

The integral operatorM̂ (T) describes the time shift during th
mapping,

M̂ ~T!Gm~ tm ,um!5Gm~ tm8,um!

[E
0

T2tb~um!

dtmd~ tm82tm2tb~um!!

3Gm~ tm ,um!. ~57!

The differential operatorM̂ (D) describes the diffusion during
the mapping,
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M̂ ~D !Gm~ tm ,um!

5Gm~ tm ,um!1
]2

]um
i ]um

j D̄m
i j ~um!Gm~ tm ,um!

2
]

]um
i F m

i ~um!Gm~ tm,um!. ~58!

The general source termST covers the initial conditions with
respect to time and possible sources in phase space,

ST5Gm8
~0!

~um8!H~tb~um8!2tm8!1M̂ ~L !M̂ ~T!Q , ~59!

where H represents the Heaviside step function a
Gm8
(0)(um8) is the initial value of flux in time.
If one is interested in finding the stationary distributio

the corresponding operator form can be obtained by set
the time derivative ofGm in ~48! to zero,

G5M̂sG1Ss , ~60!

where

M̂s5M̂ ~L !M̂ ~D !~12 n̄0!, Ss5M̂ ~L !Q . ~61!

III. MONTE CARLO ALGORITHM

Generally speaking, both~52! and ~60! are second kind
integral equations and can be solved with appropriate m
ods. In particular, these types of equations have been
cessfully solved with Monte Carlo methods by averag
over Markov chains.24 Actually, the operatorsM̂ and M̂s

define stochastic mappings with transition probability den
ties given by the kernels of the integral operatorsM (L),
M (T), andM (D) which can be also represented in integ
form,

M̂ ~D !Gm~ t,um!

5E d4um8S d~um2um8!1D̄m
i j ]2d~um2um8!

]um
i ]um

j

2F m
i ]d~um2um8!

]um
i DGm~ t,um8!. ~62!

This type of integral kernel can be approximated by

~••• !5^d~um2um82dum~um8!!&, ~63!

wheredum(um8) is a stochastic process and^•••& denotes
ensemble averaging. The expression in the brackets in~63! is
the formal expansion of thed function in a Taylor series ove
dum

i up to second order if thedum
i satisfy the relations

^dum
i &5F m

i ~um!,
~64!

^dum
i dum

j &52D̄m
i j ~um!.

It should be noted that this expansion is formal and in or
to check for the significance of higher-order terms one ha
estimate the derivatives ofGm , D̄m , and F̄m , rather than
those of thed function. Within the present approximation o
weak collisions it is uD̄m

i j u;uuiuj utb /tcoll!uuiuj u, uF̄m
i u

;u ui utb /tcoll!uui u, and therefore the contributions of th
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higher-order moments in the expansion are already quad
in tb /tcoll and can be neglected~derivatives are estimated a
u]G/]umu'G/um).

With the use of~63! Markov chains~stochastic trajecto-
ries! can be constructed according to the following alg
rithm:

~i! particles are removed from the cuts with the probab
ity equal ton̄0(um);

~ii ! the remaining particles are shifted inum
i by dum

i on
the cut with the averages of random shiftdum

i satis-
fying ~64!; for the particular way of constructing
dum

i see, e.g., Refs. 6 and 7;
~iii ! new particles are added to the cuts with local pro

ability densityQ (um);
~iv! all particles are moved from cutm to the new cut

m8 according to~35! and ~51!.

Such an algorithm would be already somewhat fas
than the direct Monte Carlo method, because it dema
only one Monte Carlo step per bounce time instead of
each trajectory integration step. On the other hand,
method is still less efficient than methods using bounce~ca-
nonical! averaging because the number of random steps
collision time is defined by the number of mappings~particle
passes through the cuts! during a collision time and this
number can be very large. However, in Section V it will b
shown how the method can be generalized to constru
much more effective algorithm based on multiple passes

IV. COMPUTATION OF DIFFUSION COEFFICIENTS

The central point of the method proposed in the pres
paper is the separation of finding the diffusion coefficie
~47! as a pure dynamical problem from the statistical pro
lem needed to solve the full kinetic equation. As will b
shown below in this section, for the costly determination
the diffusion coefficients, available integration algorithms f
the equations of motions of the ‘‘direct’’ MC methods can
used if the random steps are switched off.

The mapping transform~35! and ~51! is numerically re-
alized by integrating a mesh of initial valuesum on the Poin-
carécutm up to the cutm8. Together with the trajectory, an
additional set of equations outlined below has to be in
grated in order to obtain friction force, diffusion tensor, a
source. Finally, the mapping transform function~35!, the dif-
fusion tensor~47! with ~30!, the effective friction force~49!,
and source~50! at any point within the cut are obtained b
interpolation over the mesh grid.

The integrals of the effective sourceQ̄ and sink prob-
ability n̄ 0 along the trajectories are found by solving th
additional differential equations

]

]t
Q̄5Q, Q̄t5050,

~65!

]

]t
n̄ 05n0 , n̄ 0ut5050.
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The diffusion coefficientsD̄m and friction forceF̄m are ob-
tained in the same way as solutions of additional differen
equations

]

]t
D̄m
i j5Dm

i j , D̄m
i j ut5050,

~66!

]

]t
F̄m
i 5Fm

i , F̄m
i ut5050.

The right-hand sides of~66! contain the tensor products o
the given diffusion coefficientsDi j and friction forceFi with
the transformation matrixc̄ k

i according to~30!. The trans-
formation matrix c̄ k

i defined in ~32! is the inverse toci
k

defined as

ci
k5

]zk

]t
, i :t,

~67!

ci
k5

]zk

]um
i , i :um

i .

The equations for the coefficientsci
k are obtained by differ-

entiating the trajectory equations~19! with respect toum
i .

The resulting set of equations can be cast into matrix for

]

]t
ci
k5Tj

kci
j , ~68!

where the matrixTj
k is the Jacobian matrix of the generalize

velocity field given by

Tj
k5

]Vk

]zj
5H ]V

]q

]V

]uj

]wk

]q

]wk

]uj
J . ~69!

The initial conditions follow from~19! for small t,

cj
i ut505H V~q~m!~um!,um!

]q~m!~um!

]um
j

wi~q~m!~um!,um! d j
i

J . ~70!

Using the identity

]

]t
d j

i5
]

]t
ck
i c̄ j

k50, ~71!

the equation for the required coefficientsc̄ j
i is obtained from

~68!,

]

]t
c̄ j

i52 c̄ k
i Tj

k . ~72!

The appropriate set of initial conditions follows from th
inversion of~70!,
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~ c̄ j
i !t505

1

V2wk
]q~m!

]um
k

35 1 2
]q~m!

]um
j

2wi S V2wk
]q~m!

]um
k D d j

i1wi
]q~m!

]um
j
6 ,

~73!

where all functions of phase space coordinates have to
evaluated atui5um

i andq5q (m)(um).
The solution of the additional equations~65!, ~66!, and

~72! provide the complete set of functions needed in the s
tistical problem formulated in~48!. Note that the coefficients
c̄ j

t are not needed for the solution of the problem and the
fore only 20 equations out of the whole set in~72! have to be
actually solved. Taking into account the symmetry of t
diffusion tensor, the total number of additional equatio
even in the general case, can be reduced to 36.

In specific applications, the number of the addition
equations can often be further reduced. For example, su
reduction is possible if the initial kinetic equation~1! does
not contain the effects of the anomalous diffusion and if
neoclassical diffusion resulting from the collision modifie
drift motion on time scales of the order of the bounce time
not of interest for the particular problem. In this case, wh
deriving the Jacobian matrix~69!, the particle motion should
be considered just as a motion along magnetic field li
with parallel velocityv i ,

v i5
v i

B
B•¹xi , i51,... ,3. ~74!

Then it follows from~72! that (x and y are space and mo
mentum space coordinates!

c̄ j
i50, for i :xm

i , j :yj , ~75!

because for any functiong(z) the following identity is valid

]

]t S ]um
i

]zk D 52
]um

i

]zl S g ]

]zk
Vl

g
1
Vl

g

]g

]zkD
52S ]um

i

]zl
g

]

]zk
Vl

g
1

] ln~g!

]zk
]um

i

]t D
52

]um
i

]zl
g

]

]zk
Vl

g
, ~76!

where the independence ofum
i on t has been used. Using thi

identity with g5v i and ~74! in ~69! for finding T, ~75! im-
mediately follows. Therefore, diffusion tensorD̄m

i j and force
F̄m
i have zero components with respect to the spatial v

ablesxm
i ~no ‘‘short scale’’ neoclassical transport!.

The rest of transformation coefficients~actually still four
of them,c̄ j

i ,i :ym , j :y, are needed! can be obtained by direc
solution of~72!. However, this can be done in a shorter w
if use is made of conservation of energyE and magnetic
momentm,
2429Kasilov, Moiseenko, and Heyn
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E5m0c
2g1ew, m5

p2~12l2!

2m0B
, ~77!

whereg is given by~6!. From this it follows immediately,

]pm
]p

5
pgm

pmg
,

]pm
]l

50,
~78!

]lm

]p
5
12lm

2

p2lm
S p3gm

pm
3 g

21D , ]lm

]l
5

l~12lm
2 !

lm~12l2!
,

wheregm is the relativistic factor on the minimum surfac
u5um .

In the considered case, the number of additional eq
tions to be integrated together with the particle orbits h
been reduced to seven. As the drift motion is retained in
trajectories but neglected in the transformation matrix,
model will still cover direct orbit losses of trapped particl
occurring in systems without toroidal symmetry.

V. MULTIPASS METHOD

So far, the difference in time scales between bounce t
tb and collision timetc has been used to neglect the effect
collisions when integrating the collision tensor etc. ove
bounce time along the orbit. Collisions can then be taken
account each mapping procedure~single-pass method!. This
is already more advantageous than the direct Monte C
procedure where this is done each Runge–Kutta integra
step. Nevertheless, such a single-pass procedure will no
move the stiffness of the problem inherent in the differe
time scales. If the evolution of the distribution function is
be modeled during one collision time and collisions are ra
several hundred thousands of mappings may be neede
obtain reliable results.

In order to save computer time it is desirable to perfo
n mappings at once before doing a Monte Carlo step. T
numbern should be in the range 1!n!tc /tb . In this case,
2430 Phys. Plasmas, Vol. 4, No. 7, July 1997
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n can be chosen in such a way that a required accurac«
with respect to the systematic error in modeling diffusion c
be achieved ifn5«tc /tb . The number of actual Monte
Carlo stepsNMC per one collision time is then defined by th
accuracy parameter«, NMC51/« instead of system collision
ality and thus provides a solution to the stiffness problem

The multipass equation is derived analogous to
single-pass equation but with the replacement of the sin
pass bounce timetb(um) by the n-pass bounce time
tb
(n)(um0

) defined as the time required the particle needs
reach a certain cut aftern mappings starting fromum0

in the
cut m0. It can be written as a sum of single-pass boun
times,

tb
~n!~um0

!5tb~um0
!1tb~um1

!1•••1tb~umn21
!. ~79!

The vectorumk
is the particle position afterk mappings,

umk

i 5Ûmk

i ~um0
!

[Û i~tb
~k!~um0

!,um0
!

5Û i~tb~umk21
!1tb

~k21!~um0
!,um0

!

5Û i
„tb~umk21

!,Û i~tb
~k21!~um0

!,um0
!…

5Û i~tb~umk21
!,umk21

!. ~80!

Here, the group property of the orbits~17! has been used. I
the bounce time is redefined in this way,~47! and ~48! can
still be used in their present form.

The multipass value of any trajectory integrated vec
function, e.g.,F̄ (n) i(um0

), can be composed from its respe
tive single-pass values in the following way,
F̄ ~n!i~um0
!5E

0

tb
~n!

~um0
!
dt

]um0

i

]za FaU
q5Q̂~t,um0

!,u5û~t,um0
!

5S E
0

tb~um0
!

dt1E
0

tb~um1
!

d~t2tb~um0
!!1•••1E

0

tb~umn21
!

d~t2tb
~n21!~um0

!! D ~••• !

5E
0

tb~um0
!

dt
]um0

i

]za FaU
q5Q̂~t,um1

!,u5û~t,um1!

1•••1E
0

tb~umn21
!

dt
]um0

i

]za FaU
q5Q̂~t,umn21

!,u5Û~t,umn21
!

5F̄m
i ~um0

!1
]um0

i

]um1

a F̄m1

a ~um1
!1•••1

]um0

i

]um1

a1

]um1

a1

]um2

a2
•••

]umn22

an22

]umn21

an21
F̄mn21

an21~umn21
!. ~81!
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Here, the vector transformation matrices from cutmk to cut
mk11 are the values of the respective functionsc̄ j

i ~32!
evaluated at the bounce timetb(umk

),

]umk

i

]umk11

j 5 c̄ j
i ~q,u !uq5Q̂~tb~umk

!,umk
!,u5û~tb~umk

!,umk
! .

~82!

Expressions for multipass values of scalar~source! and ten-
sor ~diffusion! function can be composed from their respe
tive single-pass values in an analogous way.

Therefore, once the single-pass values have been
tained and stored together with the transformation matr
for each map, multipass values can be effectively compo
without further numerical effort. In this setup, the Mon
Carlo steps can now be introduced in the same way as
scribed in Section III.

VI. GLOBAL VALUES AND AVERAGED MOMENTS

In this section it is shown how to compute global valu
of any function, sayA, of dynamical variables defined by

^A&5E d6zJ fA52pE d4uE dqJ f^A&f , ~83!

where the JacobianJ and the distribution functionf are as-
sumed to be independent of gyrophasef and ^A&f is the
average ofA with respect tof

^A&f5
1

2pE0
2p

dfA. ~84!

The phase space is first separated by Poincare´ cuts numbered
by m. On each Poincare´ cut, the free particle orbits are in
troduced as local Lagrangian variables. After a fin
‘‘bounce’’ time tb , these orbits will hit either the neare
next Poincare´ cut m61 ~passing orbits! or again the cutm
itself ~trapped orbits!. In order to make the transformation t
the local coordinate system unique, the phase space has
divided into regions such that in each region the trapp
orbits belong to a single cut~see Fig. 2!. In Eulerian vari-
ables, the global value can then be written as

^A&52pS E
trapped

d4u(
m

E
q~m2

1
2!~u !

q~m1
1
2!~u !

dq

1E
co-passing

d4u(
m

E
q~m!~u !

q~m11!~u !

dq

1E
counter-passing

d4u(
m

E
q~m21!~u !

q~m!~u !

dq D uJu f ^A&f.

~85!

The phase space is traced out by the orbits completely an
local variables (t,um) the global value becomes

^A&52p(
m

E d4umE
0

tb~um!

dtuJmu f ^A&f . ~86!

From ~14!, Jm is independent oft and, in lowest order in
bounce over collision time, this is also true for the distrib
Phys. Plasmas, Vol. 4, No. 7, July 1997
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tion function f . Therefore, both can be taken out of the int
gration overt. Together with the notation for the flux densit
Gm5Jmf , the global value simply becomes

^A&52p(
m

E d4umuGm~um!u^A&f , ~87!

where^A&f is the trajectory integrated function defined
~47!. As an example, the total number of particles in t
system is obtained by settingA51, and therefore

N52p(
m

E d4umuGm~um!utb~um!. ~88!

Also, taking into account electrostatic fields the total ene
E5gmc21ef is conserved along the orbit and therefore

^E&52p(
m

E d4umuGm~um!utb~um!E~um!. ~89!

The evolution of the global values defined above is o
tained by multiplying ~48! by sgn(Jm)^A&bm, where
^A&bm[^A&f(um)/tb(um), then integrating overd4um ,
and, finally, summation overm,

]

]t
^A&52p(

m
E d4um sgn~Jm!

3^A&bmH ]2

]um
i ]um

j D̄m
i j ~um!Gm~ t,um!2

]

]um
i

3F m
i ~um!Gm~ t,um! 2 n̄ 0~um!Gm~ t,um!

1Q~um!J 12p(
m

E d4umuGm~ t,um!u~ ^A&bm

2^A&bm8 ! , ~90!

wherem85m21, m11, m for copassing, counterpassin
and trapped orbits, respectively. If^A&f is an invariant of
motion, then it is independent ont, so that
^A&bm5^A&f . In this case, the last term in~90! cancels.
For example, the evolution of the total energy discuss
above is

]

]t
E52p(

m
E d4umH uGm~ t,um!uS D̄m

pp

mg3 1
pm
mg

F̄m
p

2n 0̄E1sgn~Jm!QE D J . ~91!

This formula is useful to compute the power deposition
side the system due to auxiliary heating.

VII. BOUNCE AVERAGING

In certain cases the stochastic mapping equation~48! can
be simplified to differential form. For example, this can a
ways be done in phase space regions of strictly trapped
ticles as a result of the smallness of the gyroradius compa
to the system nonuniformity scale, and the smallness of
drift velocity compared to the parallel one, respectively.
2431Kasilov, Moiseenko, and Heyn
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Assumingum8'u and taking into account~46! and~43!
the left-hand side of the double-pass mapping equation~48!
is expanded up to linear order with respect to the small
ferenceum8

i
2um

i ,

] f

]t
1^wi&b

~2!
] f

]um
i 5

1

tb
~2!Jm

]

]um
i tb

~2!JmS ^Dm
i j &b

~2!
] f

]um
j

2^Fm
i &b

~2! f D 2^n0&b
~2! f1^Q&b

~2! ,

~92!

where tb
(2) is the double-pass bounce time~79! and the

n-pass bounce averages have been defined as@see also~81!#,

^Am&b
~n!5

1

tb
~n! Ā

~n!5
1

tb
~n!E

0

tb
~n!

dtAm . ~93!

The equations of motion~16! for this limit and the definition
~93! give the relation

~um8
i

2um
i !/tb

~2!5^wi&b
~2! , ~94!

which has been used in~92!.
If the momentum space variables are chosen

y5(E,m,f), whereE and m are the integrals of motion
~77!, the momentum space components of the velocity~94!
vanish, whereas the spatial components can be expre
through the parallel adiabatic invariant

Ji5Ji~um!5 R dsgv i , ~95!

with um5(xm
1 ,xm

2 ,E,m) and the integration has to be take
along the trapped orbit which in zero order with respect
drift velocity coincides with the magnetic field line. The sp
tial components of the averaged velocity are given by

^wi&b
~2!5

dxm
i

dt
5

1

tb
~2!

dxm
i

dn
, i51,2, ~96!

where the coordinate change per one full~double! bounce
period is~see Appendix B!,

dxm
1

dn
5

m0c

euJmu
]Ji

]xm
2 ,

dxm
2

dn
52

m0c

euJmu
]Ji

]xm
1 . ~97!

In this form, the averaged equations of motion can a
be used for the construction of multipass mapping functio
This will be shown for the case when the ‘‘short-scale’’ ne
classical transport resulting from the modification by co
sions of the trapped trajectory during one bounce period
be neglected. This approximation makes sense for parti
which deviate after many bounces significantly, as compa
to a single bounce orbit, from the magnetic surface, like ‘‘s
perbanana’’ particles in stellarators. In this case only
momentum-space diffusion coefficients have to be retai
in ~48! ~see Section IV!. Due to the invariance of the mo
mentum space variablesE andm, the transformation@matri-
ces~82! reduce to Kronecker symbols#,

]umk

i

]umk11

j 5d j
i , ~98!
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wherei , j53,4. Then-pass mapping functions~80! for even
n52k values are obtained by integrating equations~97! with
the time-like variablen changing from 0 tok. The n-pass
‘‘bounce’’ time tb

(n) ~79! and the components of the diffusio
term D̄ (n) i j , F̄ (n) i , n̄ (n), andQ̄(n) are then obtained by inte
grating simultaneously the corresponding double-pass qu
tities,

Ā~2k!5E
0

k

dnĀ~2!. ~99!

Note that up to now no restrictions have been impos
on the symmetry properties of the trap magnetic field. F
systems with rotational symmetry~tokamaks, axially sym-
metric mirrors! the mapping equation~48! reproduces the
result of canonical~bounce! averaging. Without loss of gen
erality, this is shown for the case of a tokamak. In order
obtain the bounce averaged equation, one should place
Poincare´ cut in such a way that it also stays symmetric w
respect to rotations around the symmetry axis. The midpl
obviously satisfies this condition. In this case, one mapp
variable which corresponds to the rotation angle with resp
to the symmetry axis (xm

2 5z–toroidal angle! becomes the
cyclic variable of the unperturbed mapping equation~35! in
the sense that all mapping functions exceptÛm

2 are indepen-
dent onxm

2 while Ûm
2 is a linear function ofxm

2 @see~37!#.
Moreover, the rest of the variables remain unchanged w
respect to the unperturbed mapping@double-pass mapping
for trapped particles, see~36!–~40!# and the bounce time
tb is also independent onzm .

To start with, the simplest case is considered when lo
diffusion operators, sources, and sinks are all toroidally sy
metric. In this case, the solution to~48! should be looked for
in the form independent on the cyclic variablexm

2 5z. For
such a system, the differenceGm8 @](um8)/](um)#2Gm ex-
actly vanishes in~48! for passing particles. Dividing the re
sulting equation bytb , the bounce averaged equation is o
tained,

] f

]t
5

1

tbJm

]

]um
i tbJmS ^Dm

i j &b
] f

]um
j 2^Fm

i &bf D 2^n0&bf

1^Q&b . ~100!

Here, superscript~1! is omitted for single-pass bounce ave
ages~93!. For trapped particles the result is formally th
same if one starts from the double-pass equation~48!. The
only change is the redefinition oftb and the bounce-average
to double-pass ones in~100!. This result also follows from
the more approximate equation~92!, in which the term con-
taining the averaged drift velocity vanishes due to the
sumed toroidal symmetry.

In order to derive the bounce-averaged equation in
case when local diffusion operators and sources or sinks
toroidally asymmetric, the ansatz introduced in Ref. 25
used. The collisions are assumed weak enough so that
can usen-pass mapping, wheren5«tc /tb@1 ~see Section
V! andn52k is an even number. Taking Eq.~48! in multi-
pass form, the flux is assumed again to be toroidally sy
metric, so that unperturbed mapping terms will cancel e
Kasilov, Moiseenko, and Heyn
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other. Dividing the equation bytb
(n)Jm the bounce-average

equation takes the same form as before~100!, with the
bounce averaged quantities taken in multipass form~93!. To
verify the assumption of toroidally symmetric distribution,
must be shown that all multipass bounce averages ente
the final equation are independent on the toroidal mapp
variable um

2 5zm as well. As in Section V, this is firs
checked for the friction forceFm

i . The corresponding check
for the sources, sinks, and diffusion coefficients then foll
immediately. Due to the invariance of all variables exce
the cycliczm , Eq.~98! is valid if for the index range ofi and
j the variableum

2 5zm is excluded. At the same time th
components of the friction force~and diffusion tensor! which
correspond tozm do not contribute in~100! because they
appear only in combination with derivatives of the distrib
tion function and friction force or diffusion tensor, which,
turn, vanish because of the assumed toroidal symme
Therefore it follows from~81! taking also into account~37!
and ~98! that

^Fm
i &b

~n!5
1

ntb
(
k50

n21

F̄m
i ~zm1~2pqs1Dz!k!. ~101!

In the case of trapped particles, the bounce timetb and the
bounce-averages in the right-hand side of~101! have to be
taken as double-pass ones. Due to periodicity with respe
zm , F̄m

i can be presented in form of a Fourier series over
toroidal variablez

F̄m
i ~z!5^F̄m

i &z1(
lÞ0

f l exp~ i l z!, ~102!

where

^F̄m
i &z[

1

2pE2p

p

dzF̄m
i ~z!. ~103!

From the formula for the sum of geometrical progression
follows

^Fm
i &b

~n!5
1

tb
^F̄m

i &z1O, ~104!

where

O5
1

ntb
(
lÞ0

f l exp~ i l zm!
12exp~ i ln ~2pqs1Dz!!

12exp~ i l ~2pqs1Dz!!
.

~105!

Obviously the assumption made is verified if the functi
O which depends on the toroidal variablezm is negligibly
small.

Consider first the passing particles, say co-passing w
s51. If the safety factorq is an irrational number and th
small termDz is neglected, the denominator in~105! is es-
timated to be of order one. ThereforeO becomes small with
a largen or, in other words, the collision frequency shou
be much less than the bounce frequency. Ifq is a rational
number, sayq5 j /k with j andk integers, with a large de
nominatork@1, the main contribution to the sum over th
toroidal wave numbersl in ~105! originates from the term
l5k and is estimated to be of orderfk /tb . It is small if the
force F̄m

i is not strongly toroidally localized, i.e.,k@Dk,
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where 1/Dk is the scale ofF̄m
i over toroidal angle. For

trapped particless50 and Dz!1, the long-wave toroidal
modesl;1 are the most dangerous to invalidate the appro
mation. Only ifnDz@1, the contribution from these mode
is small. Note that the same condition is true for all partic
at rational surfaces with low rationality, because in this ca
Dz cannot be neglected for passing particles. On the o
hand, this condition can be formulated such that the toro
rotation time of the bananas should be much less than
collision time,

tb /Dz!tc . ~106!

If this condition is met, the bounce-averaged equation~100!
is shown to be valid even for the case of toroidally asymm
ric diffusion operators, sources and sinks. The correspond
bounce-averaged quantities appearing in the final equa
are in full agreement with~104!, where the small quantity
O can be neglected.

Condition~106! is much more restrictive than the cond
tion of a ‘‘collisionless’’ confinement limit,tb!tc , and can
be easily violated. In this case the toroidally localized p
turbation of the distribution function, e.g., the cyclotron res
nance heating with a localized wave packet, may lead
toroidally asymmetric distributions of trapped particles26

The effect is even stronger if such heating is performed v
near a rational surface27 where the passing particles also co
tribute to the toroidal asymmetry. Note that even for a sm
induced toroidal asymmetry when condition~106! is still
valid, the effect of it can cause a significant increase in
cross-field transport through the induced toroidal asymme
of the ambipolar electric potential.28 For these cases th
Monte Carlo mapping technique based on SME provides
adequate tool to compute the particles distribution functio29

and to study symmetry breaking effects on the cross-fi
transport.

VIII. CONCLUSION

A stochastic mapping equation has been derived wh
describes, in the regime of weak collisions, the slow evo
tion of the particle distribution function in magnetic trap
This equation provides a fairly general discretization of t
drift kinetic quasilinear equation with respect to the unp
turbed motion.

When canonical~bounce! averaging is applicable, e.g
in magnetic traps with axial space symmetry or phase sp
regions of trapped particles in asymmetric traps, the co
sponding averaged equations are recovered from the stoc
tic mapping equation.

In contrast to averaging methods, the proposed met
never utilizes the integrability condition for the unperturb
particle motion and therefore takes into account in d
cretized form the variation of the distribution function alon
the unperturbed trajectories. Thus it is also applicable in
case of generically ‘‘nonintegrable’’ motion, e.g., in ergod
magnetic field layers or phase space regions where the
ticle trajectory is dynamically unstable.

For the solution of the stochastic mapping equation
simple Monte Carlo method is proposed. The mapping te
2433Kasilov, Moiseenko, and Heyn
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nique introduced allows for a separation of the dynamic m
tion problem from modeling stochastic processes and t
reduces the required processor time considerably as c
pared to methods based on the direct modeling of stocha
orbits of test particles.

At the same time, such a separation needs suffic
memory in order to precompute and store the relevant m
ping functions. This amount is, however, of the same or
which is required by averaging methods if realistic magne
field configurations are considered. In a number of cases
requirement for computer resources can be reduced by
plifying the spatial transport model and an appropri
choice of independent variables, e.g., using integrals of
tion and flux coordinates. There are no restrictions for suc
choice, because the whole formalism has been develope
a general set of coordinates and momentum space varia

The efficiency of the multipass Monte Carlo method p
posed in Section V has been tested for a tokamak geome29

and turned out to be close to the efficiency of canonica
averaged methods.6

The proposed method is applicable for modeling tra
port and heating processes in magnetic traps with bro
axial symmetry, such as stellarators or tokamaks with to
dal field ripples, as well as for modeling of kinetic effects
stochastic divertors and other systems with ergodic magn
field layers, e.g., the Earth’s magnetopause, etc.
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APPENDIX A: SURFACE ELEMENT

Let the parametrization of then21 dimensional surface
in any curvilinear coordinate system, sayz1,z2,... ,zn be

za5Fa~b1,b2,... ,bn21!, ~A1!

so that the tangential vectors related to the parametersb i are

dXb i5
]X

]za

]Fa

]b i db i ~no summation overi !. ~A2!

In Cartesian coordinates the surface element is

dS5dXb1`dXb2`•••`dXbn21. ~A3!

With ~A2! the surface element can be expressed as

dS5S ]X

]za1
`

]X

]za2
`•••`

]X

]zan21D
3

]Fa1

]b1

]Fa2

]b2 •••
]Fan21

]bn21 db1db2•••dbn21. ~A4!

On the other hand,
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S ]X

]za1
`

]X

]za2
`•••`

]X

]zan21D •ea5Jeaa1a2•••an21
,

~A5!

with co- and contravariant basis vectors defined as

ea5
]X

]za , ea5
]za

]X
. ~A6!

Contracting~A5! with the contravariant vectorea and using
the result in~A4! leads to

dS5Jeaeaa1a2•••an21

]Fa1

]b1

]Fa2

]b2 •••
]Fan21

]bn21

3db1db2•••dbn21. ~A7!

Let the equation for the surface in curvilinear coordinates

zn2F~z1,z2,... ,zn21!50. ~A8!

On choosing the parametrization as

Fa5ba, a51,... ,n21, ~A9!

Fn5F~b1,b2,... ,bn21!, ~A10!

it follows

]Fa

]b i 5d i
a1dn

a ]F

]b i . ~A11!

Taking into account the properties of the Levi–Civita sym
bol many terms vanish,

eaa1a2•••an21

]Fa1

]b1

]Fa2

]b2 •••
]Fan21

]bn21 5da
n2

]F

]ba , ~A12!

and, as a result, the covariant component of the surface
ment vector is

dS•ea5~dS!a

5J
]

]za ~zn2F~z1,z2,•••,zn21!!U
za5Fa~b1,b2, . . . ,bn21!

3db1db2•••dbn21. ~A13!

APPENDIX B: AVERAGED DRIFT VELOCITY

Let us introduce the space coordinate set (j1,j2,j3),
where

j3[q2q~m!~u !, ~B1!

so that the surfacej350 defined by the additional con
straintsE5const andm5const lies within the Poincare´ cut
~18!. On the cut the coordinatesj1 and j2 are defined by
j i5xm

i , i51,2 and away from the cut they satisfy

h•¹j15h•¹j250. ~B2!

Here,h is the unit vector along the magnetic field line. Th
shift per one full bounce period overj1 and j2 is given in
Ref. 23 as

dj1

dn
5
m0c

eB
Ag33

g

]Ji

]jm
2 ,

dj2

dn
52

m0c

eB
Ag33

g

]Ji

]jm
1 ,

~B3!
Kasilov, Moiseenko, and Heyn
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whereg33 is the metric tensor component

Ag335U ]r

]j3U5 1

uh•¹j3u
, ~B4!

andg is the metric determinant

g5det$gi j %5S ]r

]j1
`

]r

]j2
•

]r

]j3D
2

. ~B5!

Taking into account that]r /]j3 andh are parallel, from~B5!
one gets

A g

g33
5

]r

]j1
`

]r

]j2
•h5

h•dS
„x…

dxm
1 dxm

2 , ~B6!

wheredS
„x… is the element of the surfacej35const andxm

i

are the surface parameters. The spatial components o
Poincare´ cut elementdS are given by extension to the mo
mentum space

dS5dS
„x…JydEdm. ~B7!

Assuming the motion in space to be along the magnetic fi
lines with parallel velocityv i and using the invariance of th
momentum space variablesE andm one gets from~25!

A g

g33
5

Jm
Jyv i

. ~B8!

Taking into accountJy5 B/uv iu, Eq. ~97! follows from ~B3!
and ~B8!.
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