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A new method for solving the drift kinetic equation applicable for non-integrable particle motion is
presented. To obtain this goal, the general form of the drift kinetic equation is reduced to a
stochastic mapping equation which is valid in the weak collisions regime. This equation describes
the evolution of the distribution function on Poincarets of phase space. The proposed Monte
Carlo algorithm applied to the stochastic mapping equation turns out to solve the drift kinetic
equation much faster than a direct integration of stochastic orbits. It can be applied to study
quasilinear effects of radio frequency heating and transport in systems with complex magnetic field
geometries such as stellarators, tokamaks with toroidal magnetic field ripples, or ergodic divertors.
For systems with axial space symmetry the stochastic mapping equation is shown to reduce to the
well-known canonicalbounce averaged equation. For nonaxisymmetric magnetic fields the bounce
averaged equation for trapped particles is recovered.1997 American Institute of Physics.
[S1070-664X%97)02107-1

I. INTRODUCTION cients when the kinetic equation can be solved only loéally
and, at the same time, linearization can be Ws€dAs a

In studies of plasma confinement and heating in rnagE:onsequence, the problem becomes numerically stiff. Be-

netic traps one needs to know the evolution of the “unper- L
. . S . .~ cause of this stiffness, balance-type problems, such as the

turbed” part of the particle distribution function which deli f minority i distributi duri ot

evolves on a slow time scale of the order of collision time o 0Cc' 19 OF Minority ion distrioutions during: cyclotron

even longer. This function satisfies the drift kinetic equationﬂelat'n?’ can be solved IW'tE direct rr}ethods OTIy with the_
including quasilinear contributions from different rf heating elp of supercompurters. In the case of an exactly or approxi-

mechanisms and possible sources and sinks in phase spdP@tely integrable system for free particle motion, the stiff-
due to beam injection, etc. The high dimensionality of the'€SS Problem can be resolved by averaging the kinetic equa-

problem makes it difficult to solve it in a straightforward tion over canonical angles and, at the same time, the number
way with regular methods without the reduction of the di- of dimensions can be reduced to the number of the remaining
mensionality. However, such a reduction is not always poscanonical action variabl&sor to the equivalent noncanoni-
sible, and therefore Monte CarKMC) methodé_lo which cal integrals of motion. For systems with axial symmetry
are much less sensitive with respect to number of dimensiorgUch as tokamaks these invariants are the total energy, mag-
are used. netic moment, and generalized toroidal moment, where the
In the case of weak collisions, a direct application of thefirst and the last one are preserved exactly.
MC method to the solution of this drift kinetic For systems with broken symmetry such as stellarators
equationt>>8-10 e, the modeling of stochastic guiding cen- or tokamaks with toroidal magnetic field ripples, the toroidal
ter trajectories, suffers from the need to cover simultaneouslynoment is not preserved anymore. However, the dynamics
two different time scales, the “fast” bounce time corre- will be still approximately integrable if one exploits the dif-
sponding to unperturbed motion which enters the equatioference in time scales for the motion across the magnetic
through a dynamic convection term, and the “slow” colli- field ripples and the poloidal revolution to perform ripple
sional relaxation time which is determined by “collisional” (trapped-boungeaveraging. In particular, for trapped par-
terms, i.e., the Coulomb collision integral, the quasilinearticles the difference in bounce time and time of trapped orbit
diffusion operator, and sources and sinks. The time step fadrift as a whole can be used to remove the rapid bounce
the MC integration has to be much smaller than the bouncenotion from the equation for these particles by averaging
time, whereas the total integration time should be muchpyer the fast bounce phase, see, e.g., Refs. 3 and 4. In this
larger than the collisional relaxation time or, even worse, thease, the relatively slow drift motion which preserves the
transport time in the case of balance-type problems, in thispara"ey- adiabatic invariant survives averaging.
context being defined as problems which require the compu-  Even more approximate similar procedures applied to
tation of the distribution function in tr_le whole phase space i_rbassing particles in stellaratoit® this set also the toroidally
contrast to the problem of computing the transport coeffiyanned particles are counted for in the stellarator literature
namely averaging the kinetic equation over helical

ectronic mail: heyn@itp.tu-graz.ac.at ripples;~ so relaxes sti SS O r m in re-
| ic mail: heyn@i les!213 also relaxes the stiffness of the proble e
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moving rapid oscillations of particle phase space coordinateproceduré® The method proposed in the present paper al-
associated with the ripples. Here, the difference between thiews for a rigorous account of stochastic diffusion processes
time to pass a single ripple and the period of poloidal motionduring the mapping in realistic magnetic field geometries and
or, in other words, the smallness of rotational transform peweakly collisional plasmas.
one ripple, is used. The adiabatic invariant associated with  The structure of the paper is the following. In Section I,
this double time scalé!® demonstrates the integrability of using exact constants of motion, a Poincanap is con-
motion also in this case. structed and, with its help, for the regime of weak collisions
MC algorithms based on the bounce and canonically ava stochastic mapping equatiéSME) for the particle flux
eraged equatiori$®’ are much more effective than direct density through the Poincamits is derived. In a first step,
methods because the step size of time integration of the stsingle-pass mapping is considered. In Section Il a Monte
chastic orbits in averaged methods is much larger than th€arlo algorithm is introduced which is able to solve the
bounce time. For axially symmetric systems, together witnproblem much faster than any method based on direct inte-
canonical averaging, often methods are used which are n@ration of the stochastic particle orbits. In Section IV it is
based on a Hamiltonian formalism, see, e.g., Ref. 16. Beshown how to compute the map-associated diffusion coeffi-
cause the resulting equation is basically the same, in theients. In Section V, based on the single-pass SME, a multi-
context of this paper the term “canonical averaging” will be pass stochastic mapping procedure is developed. The effi-
used for all such approaches which completely remove theiency of the Monte Carlo algorithms based on this
unperturbed motion from the equation. They are also ofterinultipassing procedure is close to the efficiency of canoni-
referred to as “bounce averaging,” however, this term will cally averaged methods. In Section VI expressions for aver-
be used here for those methods where only the averagirgged quantities in terms of the solution of the SME are
over parallel bounce motion is performed. The maximumgiven. In Section VII the SME is simplified for the phase
efficiency is gained in canonically averaged methods wherépace regions of trapped particles and the result is shown to
just the collision time scale has to be met. be equivalent to the bounce averaged equation. For systems
Note that the stiffness is not completely removed byWith axial space symmetry the canonically averaged equation
bounce or ripp|e_averaging_ The ripp|e_averaged equation.§ recovered from the SME and Val|d|ty conditions for the
have a stiffness similar to the tokamak problem. For bouncdull canonical averaging procedure are discussed. Finally, the
averaged motion of trapped particles in the case of very rarg_esults are discussed and summarized in the concluding sec-
collisions, the time scale of particle drift may also becomet!On.
much shorter than the collision time and again a stiffness
problem appears. The further reduction of stiffness is posll- SINGLE-PASS MAPPING

sible if one makes use of the pa_rallel or ripple. inyariants iN" |y kinetic theory, the dynamics of the distribution func-
order to make the system fully integrable. This is a someyjgp, f(t,2) in any system of dynamical variablesnvertibly

what demanding task because the invariant surfaces are comsiated to Cartesian variables p) obeys the equation
plex and there also exist transiting particles for which the

invariants are not preserved all the time and one has to cal- ﬂ+ aﬂ: 19
culate appropriate transition probabiliti¥'s:> Note that the ot 9z%  J 9z“
need of transition probabilities already appears in the ripple-

. : . . a=1-6. 1)
averaged equations irrespective of further averaging. On the
other hand, ripple averaging requires the existence of nestddere,V“ is the phase space velocity of dynamic convection,
flux surfaces as well as the equivalence of all helical ripplesD *? andF* are the components of tijproperly transformed
But this might be destroyed, e.g., when magnetic islands ocontravariant collisional diffusion tensor and friction force
ergodic layers are present in the configuration or by a localincluding quasilinear contributions from the interaction with
ized heating of the plasma with rf heating methods. the waves, I/, is the particle lifetime due to inelastic pro-

Therefore, it is desirable to develop a general procedureesses,Q represents possible sources and sinks in phase
in which the computer time for modeling the regular particlespace, and is the Jacobian of the transformation from Car-
motion is minimized down to the amount actually requiredtesian variables r(p) to some general new variables
for modeling the stochastic process and, at the same tim&=(x,y) in 6-D phase space,
allows one.to treat cases Wlt_h destroyed magnetic surfaces A(F1,F.T3.P1:P2:P3)
and dynamically unstable orbits. = T3 T 7 3 -

In the present paper a procedure based on Poimeape IOEXEXEYRY5Y)
ping techniques is proposed which seems to meet all thEor studies of processes with length and time scales much
goals discussed. It takes full advantage of the mapping prdarger than the gyroradius and inverse gyrofrequency, an ap-
cedure describing the unperturbed motion and, at least in thgropriate choice for the dynamical variablesy) are guid-
ideal case, one mapping step is sufficient to cover any ddang center variables. For the method developed below it is
sired time interval. For purely deterministic motion theseconvenient to use the formulation introduced in Refs. 21 and
techniques are well established in fusion studies, e.g., i22, i.e., guiding center variables such that the resulting sys-
modeling of magnetic surfacEwr cyclotron heating in non- tem conserves energy and phase space volume exactly
uniform magnetic field$®1° Also, stochastic processes have (Hamiltonian system On the other hand, the parallel guid-
been included in simple models using some kind of mappindng center world velocityJ, and magnetic moment used

J D“Bﬂ—FO‘f)—v f+Q
azP 0 ’

2
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in Ref. 22 are not very convenient to deal with the Coulomb
collision operator. Therefore some new variables
y=(p,\,¢) implicitly defined through

PA pA(1-1?)

U”:m_o’ K= 2meB

0=9¢, )

will be used wherem, is the rest mass and the gyrophase.
One should note that the variablpsand A defined in this
way are not the actual particle momentum modyde and
pitch angle cosind® - p/|B||p| but may differ from them by
first-order terms in the guiding center expansion. However
this difference can be neglected when used in the collisiol
term because this effect itself is of higher order.

Let R be the guiding center position in Cartesian coor-
dinates andx=(x*,x?,x%) be its position in some general
curvilinear space coordinate system. Then the Jacot#an

becomes
oR; FIG. 1. Quasitoroidal coordinate system.
I=3dy, %= \/§=de<a—xf>,
4
a(p,r (z . .
y= (P R) = E;‘ (2) p2, In the particular case of a tokamak with circular concen-

y.R) () tric magnetic surfaces, a convenient choice of space coordi-

whereg?23 natesx' is quasitoroidal coordinates'=(¢,r,9), where

Z,r, ¥ are the toroidal angle, the small radius, and the poloi-

B¥ (21— B;B*! ri_giyC PN i 9 (B 5 dal angle(see Fig. 1 For this set of coordinates
1 (Z) B 1 e \/—8 J J B . ( )
g X

Here, e, c, B!, andB;, are particle charge, speed of light,
contra and covariant components of the magnetic field, repnereR, is the big radius of the magnetic axis.

J,=rR, R=Ry+r cosd, 12

spectively, anc:' is the completely antisymmetric unitten- | the following it will be convenient to use such a sys-
sor (Levi-Civita symbo). tem of space variablext,x?,x3= ) in which one magnetic
Introducing the relativistic factor, cyclotron frequency, field component, sa?, is positive definite everywhere in
and parallel velocity, the considered volume. Below it will be shown how the
p2 eB \p problem can be discretized with respect to this coordinate. In
y=\/1+—>, o= . U=, (6)  the tokamak geometry introduced above, the poloidal angle
MoC MoCy Moy x3=9 will serve for this purpose. Defining the remaining set

the system governing the dynamics of “free” particle mo- Of variables byu=(x*,xp,\), the interesting subset of
tion in stationary electric and magnetic fields becomes, ~ €gquations of motior{7)—(10) can be written as

d icvie i d d
giX=Vi=vg, =13 (7) FO=Q), pu=wdu), i=1..4 (13

4 ’y i (?(P . . . . . y
—p=V'=—emy—vy—, (8)  Clearly, the system is Hamiltonian and obeys Liouville’'s
dt p2ox theorem,
d)\ VS 1—7\2( y 99,1 ialnB) © L 1
—\ = = — en'b—zv i —U i | J d J .
dt N p- 99x' 279 ox —_ _gye=_| —JIw =

35779V J(aﬁ‘]9+au"]w 0. (14

d
— h=\0=—
dt¢ v @e» (10 Let the flow, i.e., the set of trajectories for all possible

. . - L initial conditions, generated by vector fiel (w) of (13) be
with the contravariant guiding center velocity given by

denoted by
bt uB*i+giikC—B"(a‘P+iaB) (11) 9=0(r,90,Ug), O(0,90,Ug)= 1
g B|>|k II B\/gﬁ_XR e'}/a—XR . y U040/ yUposYo 0 (15)
Here, ¢ is the electrostatic potential ang as well asu are u'=U'(r,90,Up), U'(0,89,Uq)=Ub,
to be expressed throughand\ using (6) and(3), respec-
tively. such that
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J
07_@(7',”&0,'.]0):9(@(T,’ﬁo,UO),U(T,’ﬂo,UO)),
(16)

Jd . .
EUI(T,ﬁo,Uo):WI(®(T,'ﬂo,Uo),U(T,'ﬂo,Uo)).

14
E_szo. (24)

On the other hand, as sketched in Appendix A, the ve-
locity flux through the area elemedtu,, of the hypersurface

Obviously, solutiong15) of the equations of motion satisfy (18) is given by

the group property
®(Tl!(7-21190!u0)):(Tl+72|001u0); (17)
U(71,U(72,%9,Ug))=U(71+ 7,,70,Up).

With the help of these trajectories, Poincaraps will be

constructed with respect to hypersurfaces in phase space. If
the initial values @¢,ug) in (15) are restricted to lie within
a hypersurfacéabeled bym) of phase space defined through

the relation

d
V“(dS)a=JV“W(19— F(my(U))

Jd - N
=J ar (@(T,Um)—ﬁ(m)(U(T,Um)))) TZO

xdul--dut=3,dud--duf,. (25)

Therefore, the Jacobian is identical to the velocity flux den-
sity through the hypersurface and will be nonzero if the sur-

with some functiondm(u) such that the integral lines of face is never tangent to the characteristics of the kinetic
(13) always intersect the surface with a finite angle, i.e., theequation. This, in turn, is the definition of such a hypersur-

surface should be transverse to the vector fi€lgw) every-

face which will be used as a Poincanet for discretization of

where, it is possible to introduce a set of Lagrangian typehe unperturbed particle motion. The choice of this surface is

variables ¢,u,,) related to the old variablesd(u) by
3= 07,9 (U, Um) = O (7,Upy),
®(Oaum):ﬁ(m)(um), (19)

u'=U'(7, ¥(m)(Um) Um)=U'(7,Uup), U (OUm)=Up.

not unique and the envisaged geometry should be a guide to
finding a topology as simple as possible. For systems with
limited particle motion in phase space, e.g., magnetic traps,
the number of Poincareuts necessary to cover all particle
populations is finite, say,,... Subscriptm will be used to
number these cuts, such thatis increasing in the direction

of the magnetic field and is periodic with the periog, .y,

Note that subscripin is not a covariant index but indicates M+ My,—Mm, i.e., the cut with numbem+ my,,is the same
the new set of variables related to the hypersurface wittas the cut with numbem. For magnetic traps without sta-

numberm.
From the group propertyl7), it follows

ul =U'(—7,9,u).

Through the coordinates change from, () to (7,u,,),
the contravariant velocity is rectified, i.ev,,=(1,0,0,0,0)
and the equations of motion simply become

dr du‘m:

a = 1, W (21)
The complete Jacobian from Cartesian to Lagrangiar'max™
variables is
J =J(¥ sl 22
m(Taum)_ ( ,U)&(T,um). ( )

Evaluating this expression in the limit—0 and taking into
account(19) and(16), it follows for the Jacobian,

Jm:‘](ﬁ(m)(um)aum)(Q(ﬁ(m)(um)aum)

i &ﬂ(m)
W(ﬂ(m)(um)rum)mi_ ’ (23)

valid for arbitrary 7 because from Liouville’s theorerti4),
the Jacobian must be independentmn
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tionary parallel electric field, a good choice for the hypersur-
face is magnetic field minimum surfaces defined by

. 0dB(x)
B(r)-VB(r)=B'(x) ™ =0. (26)

Such a Poincareut imposes no restrictions on momentum
space variables.

For example, for the tokamak model introduced above,
just one surface is sufficient if the equatorial cross section
defined by 9=0 (see Fig. 1 is used, i.e., the period is
1. In the lowest-order guiding center approximation,
the Jacobian turns out to be

B A
—h¥n2 _2(% 3
Jn=h"p“rRuy, L Rym . (27

whereBy, is the physical poloidal component of the mag-
netic field and the values

ut=r, ui=¢, ud=p, uh=\ (28)

have to be taken on the Poincangt m=1.
In the new variables %,u,,), the kinetic equatior(1)
becomes

Kasilov, Moiseenko, and Heyn 2425
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trapped” particles and their oscillation period is twice the
“bounce” time defined above. In stellarator literature, often
just that type of particles are called trapped while the other
kinds of trapped particles are referred to as passing. Also
shown in Fig. 2 are hypersurfaces which divide the phase
space into regions containing trapped particles with start and
end points on the same Poincamagt m. These surfaces are
numbered with indexn+ 1/2 and all trapped particles whose
coordinated satisfiesd,,_ 1< < In4 12 belong to the cut
m. For the case of zero parallel electric field, these surfaces
up to zero order in the drift approximation coincide with
magnetic field maximum surfaces which also sati&®).

The variables f,u,,) associated with the Poincamit
m are related to the variables'(u,,) of the aligned Poin-
carecutm’ as

7= 7= 7y(Un), (34

i i —i
u,=U'(mp(Upy),Uun)=U(uy). 35
FIG. 2. Different types of particle trajectories. On top pointing to the right a m (7o m) m) m( m) (35

copassing orbit, next two different trapped orbits, at the bottom pointing to\Nith the help of functiong35), the unperturbed motion on
the left a counterpassing orbit. The surfaces 1, m, andm+1 are Poin- . | | d ' he b . b
carecuts. The surfacesi—1/2 andm+ 1/2 indicate separatrix surfaces. time scales long cqmpare tot e_ ,Ounce time can be re-
placed by the mapping from one Poincaré to another and
thereby discretized. In the particular case of a tokamak, the
set of mapping functions for passing particld§, with the
of 4 ( TTﬂJrDTj of _FrTnf) definitions(28) becomes

gt ar\ Mar Maul, -
f f M =U(Up) =T, (36)
0 : d . J
- IT__ 1] - I o ~
+Jm 0U|m‘]m<Dm(97'+Dm(9UJm me) ot gerU%(Um)me'i‘Z?Tq Sgn)\m+Ag()\mvpmarm)v( 7
3
- V0f+Q, (29) -3
where the components of collisional diffusion tensor and P =Uin(Um) =P, (38)
friction force have to be transformed according to the rules _14 _
ANy =U(Up) =Ny 39
of tensor algebra, m = Unm(Um) =X (39
DirL( U =C_LC_{DK|(1?,U), (30 Here,q is the safety factor and { is the toroidal orbit shift

due to electric and magnetic drift per mapping. For banana
Fim(T,Um) =c_LFk(ﬁ,u). (31  particles the mapping over toroidal angle is given (8Y)
without the second term in the right-hand side, while the rest

with the transformation matrix given Hy'=(¥9,u)] of the mapping functions have a more complicated form be-

T L cause only half of the rotation period along the banana orbit
T— = m = 113 ” H
KTk Gk 1=l 4 (32)  corresponds to the “bounce” time. However, after two map-

pings they again satisfy
Let a “bounce” time 7,(u,,) (time for the transition of the N .
particle from the initial Poincareut m to the next Poincare UnUn(u)=uy,, i=134. (40)
cutm’ the particle hits on its pajtbe defined as the smallest

positive root of the equation Integrating the kinetic equatiof29) over a bounce pe-

R riod leads to
ﬁm’(U(T’Um)):®(71Um) (33) of Cof
with respect tor variable. The particles can now be grouped fl7=7dm= fl=0Jm= [ Dy~ +Dn o Fr;f} Im
into three classes with respect to the mapping from the cut m T=Tp

m to the cutm’. The corresponding orbits of co-passing

particles withm’=m+ 1, counter-passing particles with’ -

=m—1, and particles reflected from the magnetic mirror

with m’=m are shown in Fig. 2. In the present context, any oy | . of of .

particle which is reflected by the magnetic field mirror be- ——| Dy —+ D',%—J——F'mf} Im

tween neighboring Poincacaits will be called trapped. This I T I =

definition also includes particles trapped in the usual sense,

i.e., those returning to the same cut twice without intersect- 9 ffb ( i ij of i )
' +—J dr{ Dy —+DJ——F_f

ing the neighboring cuts. They will be referred to as “strictly upy, " Jo m Moul, M

TTﬁf 7j Jf T
Dm E"FDmm—me :OJm

aT
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+3 Jde et 4) Tt 2m)
m 0 T E VO Q . ( ) m'( 1um’) ﬁ(um)
Equation(41) can be more compactly written introducing the _ 2 i
particle flux densityl" ,, through thed*u,,, element of the four =Lt Um) + (9u'm(9ug~an(um)Fm(t’um)

dimensional(4-D) surface of the Poincareut,

. P
of - of __i_-g(ﬂm(um)rm(tyum)_Tb(um)arm(trum)
Lr=Jn f—D,;Ta—T—DQW+F,;f , (42) IUm
" 0 ~Do(U) Tt Up) + (U ), (48)

which is just the sum of all contributions from=0 in (41).
The Jacobian of variable$34) and (35 expressed
throughJ,, is

with the variableau,, related tou, by (35). Here, effective
force.7 and source” are defined as

. — 1 0 —
_ IHrum) - (Um) 43 .,?'m(um)zF'm(um)JrJ—HJmDH](um), (49)
™M Um) "d(Upy) m “¥m
The distribution function transforms as a scal&f=f for C=InQ(Upy). (50)
the same physical poiptwhile the diffusion flux density If slow diffusion processes are considered, the continu-
transforms as a contravariant vector, ous time derivative irf48) can be replaced by a finite differ-
) o o of! ence quotient and time can be just considered as an addi-
Frof' =D/ PR ;,‘a—l— tional mapping variablet,=t,,, which transforms as
T u_,
" tie =t + To(Up).- (51)
- of
=Fnf— DVT“TE_ ng— Finally, (48) can be cast into operator form,
m ~
0 [ oo ?t oy o s [=MI+Sr, (52
gub,\ T m Mmor Maul |0 where, neglecting terms quadratic igry,,
Therefore, the sum of contributions from= 7,(u,,) in (41) M=MEMDOMP (1-7). (53

is the particle flux density through the cot’ expressed in
variables associated with the aut As a result(41) may be
cast into the short form

H(um) MLt i) = P (U
Fm,(t,um,)a(Tm)—Fm(t,um)
m fd“um

The integral operatoM() describes the unperturbed map-
ping in phase space,

>

™ ' B . m=m'-1m’,m’ +1
:WmeL dT(D'nI,TﬁDme‘F'mf) XM (U U Tt sti) . (54)
g of The kernelM®) is
Hmfo dT(_E_VOHQ ’ 49 M) Uy Up) = Ay (Up) Uy — Upn(Um)), (55
whereu,, is connected tal,, by the mapping35). with U, given by(35). The quantityA formally defines the

Compared to the bounce time, diffusion processes have groups of particles with respect to the mapping
much longer time scale;.7,<<1, and the dependence of the
distribution function onr in the right-hand side of29), re- S m+ 1+
spectively (45), can be neglected when moving from one Ap={ 6m m-1, forcounter-passing, (56)
Poincarecut to the next. By the same order of magnitude,

for co-passing,

o L X X Sm’ ms for trapped.
this is also true for the collision terms in the flux density ’ .
(42), i.e., The integral operatdvl (7 describes the time shift during the

mapping,

I'y=Jdnf. (46) .
M (T)rm(tm Um) =yt Upy)

Introducing the notation for the quantities integrated

along the orbit over one bounce period as T—7p(upm)
= 0 Atmd(ty —tm— 7(Um))

—_— Th
A(u Ef d7A(7,Up), 4
(Um) . (7.Um) (47) KTt ), 57
the following difference-differential equation for the flux The differential operatol?/l‘m describes the diffusion during
density is obtained, the mapping,
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M(D)Fm(tm U higher-order moments in the expansion are already quadratic
in 7,/ 7¢q @and can be neglectdderivatives are estimated as

2 |07/ gu| ~T1uyy).

— I
=Lt Um) + au'maquD“J“(Um)Fm(tm’u’“) With the use of(63) Markov chaing(stochastic trajecto-
J rieg can be constructed according to the following algo-
— T (Um) Ci U)- g Mmoo | |
m (i) particles are removed from the cuts with the probabil-
The general source terBy covers the initial conditions with ity equal tovg(up); _ _
respect to time and possible sources in phase space, (i) the remaining particles are shifted in, by duy, on
0 ~ LT the cut with the averages of random shéft,, satis-
Sr=I/ (Um)H(7p(Um) —tm ) + MM, (59) fying (64); for the particular way of constructing

duy, see, e.g., Refs. 6 and 7;

(i) new particles are added to the cuts with local prob-
ability densityZ(u,,);

8\/) all particles are moved from cuh to the new cut
m’ according to(35) and (51).

where H represents the Heaviside step function and
T'(up) is the initial value of flux in time.

If one is interested in finding the stationary distribution,
the corresponding operator form can be obtained by settin
the time derivative ol in (48) to zero,

Such an algorithm would be already somewhat faster

F=M'+S;, (60 than the direct Monte Carlo method, because it demands
where only one Monte Carlo step per bounce time instead of per
. R each trajectory integration step. On the other hand, the
M=MOUMP(1-7y), S=ML. (61)  method is still less efficient than methods using boufuee
nonica) averaging because the number of random steps per
IIl. MONTE CARLO ALGORITHM collision time is defined by the number of mappirigarticle

passes through the cutsluring a collision time and this
Generally speaking, bott62) and (60) are second kind number can be very large. However, in Section V it will be
integral equations and can be solved with appropriate methshown how the method can be generalized to construct a
ods. In particular, these types of equations have been sugnuch more effective algorithm based on multiple passes.
cessfully solved with Monte Carlo methods by averaging
over Markov chaing? Actually, the operatorsV and M

Qeflne_ stochastic mappings with tra_nsmon probablhtygensrlv. COMPUTATION OF DIEFUSION COEEFICIENTS
ties given by the kernels of the integral operatdds"),

M, and M® which can be also represented in integral  The central point of the method proposed in the present
form, paper is the separation of finding the diffusion coefficients
N O (tup) (47) as a pure dynamical problem from the statistical prob-
mrem lem needed to solve the full kinetic equation. As will be
4 — (U= Upy) shown below in this section, for the costly determination of
:f d*up| 8(Up—Um)+ Dy, the diffusion coefficients, available integration algorithms for

updul, ) i :
the equations of motions of the “direct” MC methods can be

_; 90(Up—Upy) used if the random steps are switched off.
~m aul Lin(t, ). (62) The mapping transfornB85) and(51) is numerically re-
_ _ _ alized by integrating a mesh of initial valuag, on the Poin-
This type of integral kernel can be approximated by carecutm up to the cutm’. Together with the trajectory, an
(-+)=(8(Um—Upy — SUpm(Um))), 63) additional set of equations outlined below has to be inte-

grated in order to obtain friction force, diffusion tensor, and
where du,(up,) is a stochastic process afie--) denotes source. Finally, the mapping transform functi@®), the dif-
ensemble averaging. The expression in the brackd®3ris  fusion tensol(47) with (30), the effective friction forc&€49),
the formal expansion of thé function in a Taylor series over and sourcg50) at any point within the cut are obtained by
duy, up to second order if théuy, satisfy the relations interpolation over the mesh grid. o
i\ The integrals of the effective sour€@ and sink prob-
(SUy =7 m(Um), [ . i i
(64) ability v, along the trajectories are found by solving the
<5UL15ULq>=2D_H}(Um)- additional differential equations

It should be noted that this expansion is formal and in order o o

to check for the significance of higher-order terms one has to a_rQ:Q’ Q,-0=0,

estimate the derivatives df,,, D,,, andF,,, rather than (65)
those of thed function. Within the present approximation of

weak collisions it is |D|~|u'ul| 7/ requ<|u'ul], |F!| J—_ o

~| U|my/7eon<<|u’|, and therefore the contributions of the g7 0 "o Volr=0=0.
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The diffusion coeff|C|entsD and friction forceF are ob- 1

tained in the same way as solutions of additional dn‘ferenﬂa(C Oz—aﬂ(m)
equations Q-wk—
aug,
_D_IJ_D | D_Irjn =0, 1 B (919(Jm)
0= i = —w' (Q W(?—l(}(&n—))é +Wiﬂm—)
-Fm=Fm,  Fil=0=0. J oul

(73

where all functions of phase space coordinates have to be
evaluated ati'=uy, and &= O (Up).
The solution of the additional equatio(85), (66), and
(72) provide the complete set of functions needed in the sta-
tistical problem formulated i48). Note that the coefficients
c_jT are not needed for the solution of the problem and there-
ck=—, i, fore only 20 equations out of the whole set(it2) have to be
(67) actually solved. Taking into account the symmetry of the
diffusion tensor, the total number of additional equations,
K az* i even in the general case, can be reduced to 36.
P aul In specific applications, the number of the additional
equations can often be further reduced. For example, such a
The equations for the coefficient§ are obtained by differ- ~reduction is possible if the initial kinetic equati¢f) does
entiating the trajectory equatior€9) with respect tou),. ~ not contain the effects of the anomalous diffusion and if the
The resulting set of equations can be cast into matrix formneoclassical diffusion resulting from the collision modified
drift motion on time scales of the order of the bounce time is
. not of interest for the particular problem. In this case, when
7-Ci K=Ticl, (68)  deriving the Jacobian matri69), the particle motion should
be considered just as a motion along magnetic field lines
¢ With parallel velocityv,

The right-hand sides of66) contain the tensor products of
the given diffusion coefficient®'! and friction forceF' with
the transformation _matrhc_'k according to(30). The trans-
formation ma’[rixc_'k defined in(32) is the inverse toc!‘
defined as

where the matriﬂ'}‘ is the Jacobian matrix of the generalize
velocity field given by

.U .
v'=gB-VX, i=1..3 (74)
N 90
) oV 99  oul Then it follows from(72) that (x andy are space and mo-
T; =) ok awk [ (690  mentum space coordinajes
99 oul =0, forixy, iy (75)

The initial conditions follow from(19) for small 7, because for any functiog(z) the following identity is valid

55 (u) a (au‘m) aul, ( a V' VI ag)
u —_— =
i QI (my(Upy) ,Upy) ﬂj—m ar\ az¢ 97\ 99Kk g g g Jz
G0} Moo 70 au 9 V' aln(g) aul
Wl(ﬁ(m)(um)aum) 5; (Erg 9 +7kg—&—m)
-
Using the identity au' PRV
; Erg K (76)
—6' —ckc c k=0, (77)

ar where the independencelaﬂ] on 7 has been used. Using this
identity with g=v, and (74) in (69) for f|nd|ng_T (75) im-
the equation for the required coefficients is obtained from  mediately follows. Therefore, diffusion tensbf), and force
(68), F' have zero components with respect to the spatial vari-
ablesx'm (no “short scale” neoclassical transpprt

The rest of transformation coefficiertectually still four
of them,c | i1Ym,jy, are neededcan be obtained by direct
solution of(72). However, this can be done in a shorter way
The appropriate set of initial conditions follows from the if use is made of conservation of ener§yand magnetic
inversion of(70), momentu,

Slo Tk, (72

Phys. Plasmas, Vol. 4, No. 7, July 1997 Kasilov, Moiseenko, and Heyn 2429

Downloaded-11-Jul-=2001-t0-129.27.161.66.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/pop/popcr.jsp



p2(1—2\?) n can be chosen in such a way that a required accusacy
E=moc’y+ep, u= SmB (77 with respect to the systematic error in modeling diffusion can
0 be achieved ifn=¢7./7,. The number of actual Monte
Carlo stepfNyc per one collision time is then defined by the
accuracy parameter, Ny c= 1/e instead of system collision-
ality and thus provides a solution to the stiffness problem.
MPdm PYm  Pm The multipass equation is derived analogous to the
%z Py’ Kzo’ single-pass equation but with the replacement of the single-
(78) pass bounce timery(u,) by the n-pass bounce time
75”(um,) defined as the time required the particle needs to

wherey is given by(6). From this it follows immediately,

—\2/n3 —\2
INm _ 1 , Am( P 37”‘ _ ) INm _ A1 )‘mz) reach a certain cut after mappings starting frorumo in the
g PAm\ Py I\ Am(1—A7) cut my. It can be written as a sum of single-pass bounce
times,
wherey,, is the relativistic factor on the minimum surface

U=up.
In the considered case, the number of additional equa- 75" (Umg) = To(Um) + 7p(Um) T+ 7p(Um ). (79)

tions to be integrated together with the particle orbits has

been reduced to seven. As the drift motion is retained in th

trajectories but neglected in the transformation matrix, thé@r he vectorup,

model will still cover direct orbit losses of trapped particles

occurring in systems without toroidal symmetry.

) is the particle position aftek mappings,

U = U, (Urny)

V. MULTIPASS METHOD

=i~
So far, the difference in time scales between bounce time U7 (umo)’umo)

7, and collision timer; has been used to neglect the effect of .

collisions when integrating the collision tensor etc. over a =U'(7p(Um,_ )+ 7 P (Umy),Um,)
bounce time along the orbit. Collisions can then be taken into

account each mapping procedysingle-pass methgdThis

(i ji¢ (k=1)
is already more advantageous than the direct Monte Carlo =Ul(7p(Um,_ ) U (75 " (Umg)sUmg))
procedure where this is done each Runge—Kautta integration
step. Nevertheless, such a single-pass procedure will not re- - Oi(Tb(um ) Um ) (80)
k=177 " Mg—17"

move the stiffness of the problem inherent in the different
time scales. If the evolution of the distribution function is to
be modeled during one collision time and collisions are rareHere, the group p_roperty_of th_e orp(ti;?) has been used. If
several hundred thousands of mappings may be needed #3€ bounce time is redefined in this way7) and (48) can
obtain reliable results. still be used in their present form.

In order to save computer time it is desirable to perform  The multipass value of any trajectory integrated vector
n mappings at once before doing a Monte Carlo step. Théunction, e.g.F™'(up, ), can be composed from its respec-
numbern should be in the rangedn<<7./7,. In this case, tive single-pass values in the following way,

au!

Mo

Fll

J— (n)
F(n)i(umo): JTbn (Umo)dT
0

z¢ -
ﬁz@(f,umo),u:u(r,umo)

(U, ) (U, ) p(Um, ) _
:U °d7+f0 1d<r—rb<um0>>+~-+f0 d(r— 7 ”(umon)(m)

0

i
:JTb(um‘))d ﬁumOFa

i

Tb(Umnil) &umo
— ot dr——F*
0 Jz 0

0z%

ﬁ:(:)(r,uml),u:ﬂ(r,uml) 19:(:)(T,Umnil),U:LAJ('r,Umnil)

i i aual &uan72
=F (u )+—{9um0§ (U )+ + Py %y e (T (81)
m mo o ml ml ajg ay apn_q m._ mn,l .
auml &uml 8um2 &umn_l n-1
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Here, the vector transformation matrices from oytto cut  tion functionf. Therefore, both can be taken out of the inte-
m,,, are the values of the respective functioﬁ (32 gration overr. Together with the notation for the flux density

evaluated at the bounce timg(umk), I',=Jf, the global value simply becomes
ot J . .
Kk — X AYy=2 AU T (U [{2) (87
——[?ujmkﬂ —C_}(ﬂ,u)|19:@(Tb(umk),umk),u:o(Tb(umk),umk)- 7 % mlCm(Um)|{- )

(82 where(.7), is the trajectory integrated function defined in

Expressions for multipass values of scasource and ten-  (47)- As an example, the total number of particles in the
sor (diffusion) function can be composed from their respec-SyStém is obtained by setting’=1, and therefore
tive single-pass values in an analogous way.

Therefore, once the single-pass values have been ob- N=2m>, fd4um|rm(um)|7'b(um)- (88
tained and stored together with the transformation matrices m
for each map, multipass values can be effectively composedlso, taking into account electrostatic fields the total energy
without further numerical effort. In this setup, the Monte #=ymc®+e¢ is conserved along the orbit and therefore
Carlo steps can now be introduced in the same way as de-

scribed in Section lIl. (H=27Y, f U] T o Up) | 76 (U ) (U ). (89)
m

The evolution of the global values defined above is ob-
tained by multiplying (48) by sgn@m){.#)pm Where

In this section it is shown how to compute global values{-%)bm=(- %) s(Um)/ 7o(Um), then integrating over‘uy,
of any function, say#, of dynamical variables defined by and, finally, summation oven,

VI. GLOBAL VALUES AND AVERAGED MOMENTS

J
(%}zf deszgz=27rf d4uf d9If(. %), (83 E(ﬁf)szE f d*up, sgn(Jpm)
m
where the Jacobiad and the distribution functiorfi are as- 2
sumed to be independent of gyrophaseand(.7), is the ><<U%>bm[
average of Z with respect tog

i _
é’U:T]auf'an(um)Fm(t’um) (?u|m
1 (e X T (UmT (6 Um) = vo(Um) Tt Up)
<U75>¢:ﬁjo d(ﬁxz (84)

+(upy) +2w§ fd4um|l“m(t,um)|(<.,f%>bm

The phase space is first separated by Poincainumbered
by m. On each Poincareut, the free particle orbits are in- b
troduced as local Lagrangian variables. After a finite — (b ) (90
“bounce” time 7,, these orbits will hit either the nearest wherem’=m—1, m+1, m for copassing, counterpassing,
next Poincarecut m= 1 (passing orbitsor again the cum  and trapped orbits, respectively. (%) , is an invariant of
itself (trapped orbits In order to make the transformation to motion, then it is independent onr, so that
the local coordinate system unique, the phase space has to p-%>bm:<-”’z>¢- In this case, the last term i®0) cancels.
divided into regions such that in each region the trappedor example, the evolution of the total energy discussed
orbits belong to a single cusee Fig. 2 In Eulerian vari- above is
ables, the global value can then be written as

d DPP Pm—
(AH=2m f du> fﬂ(m ) A =2 fd4“m‘|rm(t’“m)|(m$3+m_n;Fpm
o trapped mJ % m %)(u)
+ f auS [P g —Wﬂsgr{am)@%)]. (91)
co-passing m 19(m)(u)

This formula is useful to compute the power deposition in-
+f duS fﬁ(m)(u) dﬁ) 3E(2) . side the system due to auxiliary heating.
C m

ounter-passing F(m-1)(W)
(85)
The phase space is traced out by the orbits completely and i\r/lu' BOUNCE AVERAGING
local variables ¢,un) the global value becomes In certain cases the stochastic mapping equag8ncan
() be simplified to differential form. For example, this can al-
(A)y=2m, f d“umf0 dr|Inlf(2) 4. (86)  ways be done in phase space regions of strictly trapped par-
m

ticles as a result of the smallness of the gyroradius compared
From (14), J,, is independent ofr and, in lowest order in to the system nonuniformity scale, and the smallness of the
bounce over collision time, this is also true for the distribu-drift velocity compared to the parallel one, respectively.
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Assumingu,,,~u and taking into accour(#6) and(43)  wherei,j=3,4. Then-pass mapping function80) for even
the left-hand side of the double-pass mapping equdd8nh n=2k values are obtained by integrating equati¢®8 with
is expanded up to linear order with respect to the small difthe time-like variablen changing from O tck. The n-pass

ferenceu,, —u,, “bounce” time Tg”)_(79) and the components of the diffusion
Jf of 1 g of term DM FMI 5™ and Q™ are then obtained by inte-
— (WD —= — 723 [ (D)2 — rating simultaneously the corresponding double-pass quan-
at P G = g ™ Il (Pl 51 Sties’g Y ponding pass d
i — k  —
—<F'm>£,2>f)—<vO>£f>f+<Q>Ef% A j dnA®. (99)
0
(92

@) ) Note that up to now no restrictions have been imposed
where 7 is the double-pass bounce tin@9) and the  on the symmetry properties of the trap magnetic field. For
n-pass bounce averages have been defingse@salsd81)],  systems with rotational symmetigokamaks, axially sym-

_ (n) metric mirrorg the mapping equatio48) reproduces the
(A =—m AN =—= | ™ d7A,. (93)  result of canonicalbounce averaging. Without loss of gen-
b To 70 erality, this is shown for the case of a tokamak. In order to
The equations of motiofiL6) for this limit and the definition obtain the bounce averaged equation, one should place the
(93) give the relation Poincarecut in such a way that it also stays symmetric with
respect to rotations around the symmetry axis. The midplane
obviously satisfies this condition. In this case, one mapping
which has been used i92). variable which corresponds to the rotation angle with respect
If the momentum space variables are chosen af0 the symmetry axis)G,={-toroidal anglg becomes the
y=(E,u,¢), whereE and u are the integrals of motion Cyclic variable of the unperturbed mapping equati8h) in
(77), the momentum space components of the velo@#  the sense that all mapping functions excUﬁ; are indepen-
vanish, whereas the spatial components can be expresseéent onx3 while U2 is a linear function ofx? [see(37)].

(U, —ul )/ HP=(wh@, (94)

m’

through the parallel adiabatic invariant Moreover, the rest of the variables remain unchanged with
respect to the unperturbed mappifdpuble-pass mapping
J=3,(up) = i;dsw“, (95)  for trapped particles, se€6)—(40)] and the bounce time

T iS also independent o, .
with uy,=(x%,,x3,E, ) and the integration has to be taken To start with, the simplest case is considered when local
along the trapped orbit which in zero order with respect todiffusion operators, sources, and sinks are all toroidally sym-
drift velocity coincides with the magnetic field line. The spa- metric. In this case, the solution (d8) should be looked for

tial components of the averaged velocity are given by in the form independent on the cyclic variabig=¢. For
; ; such a system, the differendg,, [d(um)/d(Upn)]—T €X-
<Wi><2>:dﬁ: i dﬁ i=12 (96) actly vanishes in(48) for passing particles. Dividing the re-
b dt Y dn’ " sulting equation byr,, the bounce averaged equation is ob-
tained,

where the coordinate change per one falbuble bounce
period is(see Appendix B of 1 9 o of ,
= Todm <D|nj"l>b_—é,uj —(Fiof | —(vo)of
m
= . (97

dn —eldnl oxg,”  dn o eldn| oxp, +(Q)p. (100

dxt, mec 43,  dxg, meC  4J, t Tpdm dup,

T e g e o ot car mre, superscrp) i it for sl pass bource aver
e ages(93). For trapped particles the result is formally the
This will be shown for the case when the “short-scale” neo- ges(93) bped p Y

. . . same if on rts from th le- i8). Th
classical transport resulting from the modification by colli- same if one starts from the double-pass equat#d). The

. X . . only change is the redefinition af, and the bounce-averages
sions of the trapped trajectory during one bounce period cap double-pass ones i100). This result also follows from

\?viinﬁgijle\(;[e?' Tf?"?’ gpzrozlmarlltlon r?arlfﬁis snetlnse for Fr):rt'(;letje more approximate equatig®2), in which the term con-
to aCsin ele ?)(?u?]cz ortit );romjtk?eeiwzgnet?fsuﬁa?:z Cl(i)kee‘iue aining the averaged drift velocity vanishes due to the as-
9 ' 9 ' sumed toroidal symmetry.

perbanana” particle_s in_stellarat_or_s. In this case only _the In order to derive the bounce-averaged equation in the
momentum-space diffusion coefficients have to be retamegase when local diffusion operators and sources or sinks are

Lze(:t?ngsseeacsf(\:/g?igtl)?f&zlﬁl% to ttr:]ee tlpavnasr;grnrﬁ;grﬁ:::trin-]o- toroidally asymmetric, the ansatz introduced in Ref. 25 is
P K used. The collisions are assumed weak enough so that one

ces(82)_ reduce to Kronecker symbds can usen-pass mapping, whene=g7./7,>1 (see Section

au'mk ‘ V) andn=2k is an even number. Taking E8) in multi-
T 5} , (98 pass form, the flux is assumed again to be toroidally sym-
Umy metric, so that unperturbed mapping terms will cancel each

2432 Phys. Plasmas, Vol. 4, No. 7, July 1997 Kasilov, Moiseenko, and Heyn

Downloaded-11-Jul-=2001-t0-129.27.161.66.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/pop/popcr.jsp



other. Dividing the equation byg”)Jm the bounce-averaged where 1Ak is the scale ofFim over toroidal angle. For
equation takes the same form as befot®0), with the trapped particlesr=0 and A{<1, the long-wave toroidal
bounce averaged quantities taken in multipass f(@8. To  moded ~1 are the most dangerous to invalidate the approxi-
verify the assumption of toroidally symmetric distribution, it mation. Only ifnAZ>1, the contribution from these modes
must be shown that all multipass bounce averages enteririg small. Note that the same condition is true for all particles
the final equation are independent on the toroidal mappin@t rational surfaces with low rationality, because in this case
variable u2 =7, as well. As in Section V, this is first A{ cannot be neglected for passing particles. On the other
checked for the friction forc€|,. The corresponding checks hand, this condition can be formulated such that the toroidal
for the sources, sinks, and diffusion coefficients then followrotation time of the bananas should be much less than the
immediately. Due to the invariance of all variables exceptcollision time,

the cyclic{,,, Eq.(98) is valid if for the index range of and

j the variableu?=¢, is excluded. At the same time the /AL=Te. (106
components of the friction fora@nd diffusion tensgrwhich  If this condition is met, the bounce-averaged equatin0)
correspond to/,, do not contribute in(100 because they is shown to be valid even for the case of toroidally asymmet-
appear only in combination with derivatives of the distribu- ric diffusion operators, sources and sinks. The corresponding
tion function and friction force or diffusion tensor, which, in bounce-averaged quantities appearing in the final equation
turn, vanish because of the assumed toroidal symmetnare in full agreement witt{104), where the small quantity
Therefore it follows from(81) taking also into accouni37) O can be neglected.

and(98) that Condition(106) is much more restrictive than the condi-
n-1 tion of a “collisionless” confinement limitr,< 7., and can
(Fi >(n):i2 F(g +(2mqo+ALK). (101) be easily violated. In this case the toroidally localized per-
mb &y ™o turbation of the distribution function, e.g., the cyclotron reso-

nance heating with a localized wave packet, may lead to

In the case of trapped particles, the bounce tipand the toroidally asymmetric distributions of trapped partictés.
bounce-averages in the right-hand side(td1) have to be . . T
L . The effect is even stronger if such heating is performed very
taken as double-pass ones. Due to periodicity with respect to . ) h
=) b ted in f ¢ 2 Fouri . th near a rational surfaewhere the passing particles also con-
fm’ 'dmI can gl presented in form ot a Fourier series over gy ite to the toroidal asymmetry. Note that even for a small
oroidal variableg induced toroidal asymmetry when conditid@06) is still

valid, the effect of it can cause a significant increase in the

Flrn(g):<|:lrn>§+;0 ¢ explil ), (102 cross-field transport through the induced toroidal asymmetry
of the ambipolar electric potenti&i. For these cases the
where Monte Carlo mapping technique based on SME provides an
_ 1 (»m adequate tool to compute the particles distribution funéfion
(Fin = Zf_ d¢FL(0). (103  and to study symmetry breaking effects on the cross-field
” transport.
From the formula for the sum of geometrical progression it
follows
1 VIIl. CONCLUSION
<FIm>E)n):T_<FIm>§+ o, (104 A stochastic mapping equation has been derived which
® describes, in the regime of weak collisions, the slow evolu-
where tion of the particle distribution function in magnetic traps.
1—exp(iln (27qo+AQ)) This equation provides a fairly general discretization of the

O=

nin ;o &, exp(il ) 1= exp(il(27qo + A7) | drift kinetic_ guasilinear equation with respect to the unper-
105 turbed motion. _ o _
( When canonicalbounce averaging is applicable, e.g.,
Obviously the assumption made is verified if the functionin magnetic traps with axial space symmetry or phase space
O which depends on the toroidal variabfg, is negligibly  regions of trapped particles in asymmetric traps, the corre-

small. sponding averaged equations are recovered from the stochas-
Consider first the passing particles, say co-passing withic mapping equation.
o=1. If the safety factoq is an irrational number and the In contrast to averaging methods, the proposed method

small termA{ is neglected, the denominator (405 is es-  never utilizes the integrability condition for the unperturbed
timated to be of order one. Therefa@ebecomes small with  particle motion and therefore takes into account in dis-
a largen or, in other words, the collision frequency should cretized form the variation of the distribution function along
be much less than the bounce frequencyy lis a rational  the unperturbed trajectories. Thus it is also applicable in the
number, sayg=j/k with j andk integers, with a large de- case of generically “nonintegrable” motion, e.g., in ergodic
nominatork>1, the main contribution to the sum over the magnetic field layers or phase space regions where the par-
toroidal wave numbers in (105 originates from the term ticle trajectory is dynamically unstable.

I =k and is estimated to be of orde /7, . It is small if the For the solution of the stochastic mapping equation a
force F}, is not strongly toroidally localized, i.ek> Ak, simple Monte Carlo method is proposed. The mapping tech-
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nigue introduced allows for a separation of the dynamic mo- X oX X
tion problem from modeling stochastic processes and thus ﬁ/\ 9z%2 VN azan 1 “€a=J€na a, - a,
reduces the required processor time considerably as com- (A5)
pared to methods based on the direct modeling of stochastic. ) ) )
orbits of test particles. with co- and contravariant basis vectors defined as
At the same time, such a separation needs sufficient aX 9z
memory in order to precompute and store the relevant map- ea:E, GQIW- (A6)
ping functions. This amount is, however, of the same order _ _ _ _
which is required by averaging methods if realistic magneticContracting(AS) with the contravariant vecta® and using
field configurations are considered. In a number of cases th&e result in(A4) leads to
requirement for computer resources can be reduced by sim- ab 9P gPpan-1
pllfymg the spatial transport model and an appropriate dS=Je“ewlazman_1 BT 3p? . g T
choice of independent variables, e.g., using integrals of mo-
tion and flux coordinates. There are no restrictions for such a xdpldg?---dp" L. (A7)
choice, because the whole formalism has been developed for ) , . )
a general set of coordinates and momentum space variabld<€t the equation for the surface in curvilinear coordinates be
The efficiency of the multipass Monte Carlo method pro- 2"~ F(z%,22,... 2" 1)=0. (A8)
posed in Section V has been tested for a tokamak geofietry ) L
and turned out to be close to the efficiency of canonically©" choosing the parametrization as

averaged methods. dr=8% a=1,... n—1, (A9)
The proposed method is applicable for modeling trans- . 10 -
port and heating processes in magnetic traps with broken ®"=F(8%.8%,... .8" "), (A10)

axial symmetry, such as stellarators or tokamaks with toroij; follows
dal field ripples, as well as for modeling of kinetic effects in

stochastic divertors and other systems with ergodic magnetic /P — 5 5af9_':_ (A11)
field layers, e.g., the Earth’s magnetopause, etc. B bonagt
Taking into account the properties of the Levi—Civita sym-
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ﬁZ Z"‘=ll>"‘(ﬁ1,ﬁ2 ____ Bn—l)
APPENDIX A: SURFACE ELEMENT xdptdg?--dp" 1, (A13)

_ Let the_parametrlzat_mn of the— 1 d|mer213|0na!1 surface APPENDIX B: AVERAGED DRIET VELOCITY
in any curvilinear coordinate system, sayz?,... ,z" be

72=®(pL g2, g 1), Al Let us introduce the space coordinate sét,§?,¢%),
(BB B ) ( ) where
so that the tangential vectors related to the paramgtease 3
IX IDe &£=0- 0(m)(U)y (B1)
dxﬂizﬁa—l—dﬁ‘ (no summation ove). (A2)  so that the surfacg&®=0 defined by the additional con-
B straintsE=const andu =const lies within the Poincareut
In Cartesian coordinates the surface element is (18). On the cut the coordinates’ and ¢2 are defined by
dS=dX s/ \dX g2/\+ - AdX g1 (A3) &=x,, 1=1,2 and away from the cut they satisfy
1_ 2 _
With (A2) the surface element can be expressed as h-VéE'=h-V¢o=0. (B2)
aX X aX Here,h is the unit vector along the magnetic field line. The
ds= 3 “1/\¢9 o\ N shift per one full bounce period ovét and £ is given in
z z z Ref. 23 as
P gp*2  GPn-1
XGgT g g T AFIApT - dBT (Ad) de' _moc [339d A€ meC  [Ggsddy
dn eB V g g, dn eB V g 9’
On the other hand, (B3)
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wheregs; is the metric tensor component

B 3~ e &
andg is the metric determinant
arar oar\?
gzdel{gij}:(&—gl/\gz' F) : (B5)

Taking into account thatr/ &2 andh are parallel, fron(B5)
one gets
ar or h-dSy

/9
—:—/\—. = —
Oaz € 9&° h dxgdxg,’

wheredS,, is the element of the surfag€=const andx!,

(B6)
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