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The Stochastic Mapping Technig®MT), a highly efficient method to solve the five-dimensional
drift kinetic equation in the long-mean-free-path regime, is presented in an application to
stellarators. Within this method, the dimensionality of the problem is reduced to four dimensions
through a discretization in one dimension. Instead of tracing test particles in the whole phase space,
test particles are followed on particular Poincatgs. With this approach, the computation time is
reduced by a large factor compared to direct Monte Carlo methods. The SMT is applicable to
stellarators with arbitrary magnetic field geometries and topologies. It can be used for any problem
where currently conventional Monte Carlo methods are applied. In particular, it is well suited for
modeling the distribution function of supra-thermal particles generated by auxiliary heating
methods, for studies of stellarator transport properties and for a fast survey of a specific
configuration in the whole phase space necessary for an estimationa-péarticle
confinement. ©2002 American Institute of Physic§DOI: 10.1063/1.1493793

I. INTRODUCTION much longer than the characteristic time scale of the indi-
vidual particle motion. In the case of the DKE, the time scale
Particle methods are powerful modern tools for com-of particle motion is in the range of either the bounce time or
puter modeling of various kinetic phenomena in plasmasthe collision time which are certainly much smaller than a
They can be used to compute the distribution function itseltypical relaxation time.
as well as different macroscopic parameters of the plasma. |n addition to this, modern stellerators have a quite com-
The essence of these methods is based on the definition pfex magnetic field geometry where numerous toroidal and
the distribution function as the particle density in phasepoloidal modes contribute to the magnetic field spectrum.
space. Thus, following the orbits of “all” plasma particles is This makes a direct computation of the field and of the drift
the same as modeling the distribution function. Naturally, itorbits “expensi\/e" in terms of Computing time. In addition,
is impossible and also not necessary at all to follow literallythe restriction to a Fourier representation in flux coordinates
all pOSSibIe orbits of the real partiCleS. |nStead, a relativelydoes not allow for a proper treatment of such real space

small number of “test” particles is sufficient for that pur- configurations which besides embedded surfaces also include
pose. The main requirement iS that th|S number iS Iarg@S|and structures or ergodic zones.

enough to ensure the presence of a sufficient number of test Therefore, it is of high interest to develop a method

particles in each “elementary” volume of phase space. SucRyhjch allows for a proper treatment of general magnetic con-
an elementary volume should on one hand be small enou%urations. The Stochastic Mapping Technig(8MT) is
compared to the scale of the distribution function and on thech a method to solve the DKE in the long mean free path
other hand it should be not too small in order to keep theregime. The method is capable of dealing with a general
overall number of test particles below a reasonable limit. magnetic-field geometry in real space coordinates and shows
In nonaxisymmetric systems, the drift kinetic equationy strong gain in computational speed making use of a dis-
(DKE) governing the particle evolution is five-dimensional. cretization in one dimension, of local magnetic coordinate
To meet the first requirement in such a high dlmensmnagystemsy of precomputed maps for the magnetic field and for

phase space, the amount of test particles has to be big. Hkift orbits, and of a proper stochastic treatment of Coulomb
addition, the time to follow test particles is of the order of the q)jisions.

relaxation times of macroscopic parameters. Typically, thisis | the present paper, the SMT for stellarators is de-

scribed in detail, various applications of this technique are
3E|ectronic mail: kernbichler@itp.tu-graz.ac.at discussed and the results of benchmarking with other meth-
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ods are presented. Basically, the applications of SMT are theor and of the drag force have to be stored in three dimen-
same as of conventional Monte CarlMC) methods In sions where the main effort is to reconstruct the dependence
addition, various weighting schemes developed for convenen the particle pitch. The dependence on the momentum
tional Monte Carlo methods are fully applicable to SMT. On modulus can be easily factorized.

the other hand, the high computational speed gained with In Appendix C, it is shown how the distribution function
SMT (2 orders of magnitude or morallows for the solution can be reconstructed in every spatial point of the configura-
of problems where the usage of conventional MC methods igon. In addition, formulas for various moments of the distri-
not reasonable because of large computation times. bution function are presented.

The main idea behind SMT to replace the continuous In Sec. IV, the SMT is applied to the problem of com-
particle motion with a sequence of mappings of particle foot-uting neoclassical transport coefficients and to the “global”
prints is definitely not new. For example, the motion of passfroblem of computing convective fluxes generated by supra-
ing particles in the ergodic field of a stellarator has beerthermal particles in a stellarat6r’ Two magnetic configura-
modeled in this way in Ref. 2. In this reference, the Coulomitions have been considered, the Wendelstein 70A43-AS)
collisions have been modeled with random changes of velocstellaratot’ and the quasi-helically symmetric stellarator
ity space variables correctly in a qualitative way. The idea tdQHS).™* The first configuration has a rather complicated to-
use numerically computed orbits for the construction ofpology of the minimum-B surfaces, whereas the second one
Poincaremaps has been applied to model the regular motioris very sensitive to the accuracy of particle drift modeling.
of run-away electrons in Refs. 3 and 4. However, in theFor both configurations, a real space representation of the
present approach, for the first time, the treatment of collisiormagnetic field has been used. For QHS, the expansion over
processes and the usage of real drift orbits for the construdhe associated Legendre functibhbas been applied.
tion of Poincaremaps are performed consistently for the
DKE. The formalism allowing for such a consistent treat-
ment has been developed _in Ref. 5. _ Il. GENERAL FORMALISM

In Sec. IIA, a convenient formulation of the DKE in
tensor notation and of the set of equations governing thé.- Drift kinetic equation
dynamics of drift particle motion is given. In Sec. IIB, the  The drift-kinetic equation for the particle distribution
concept of the SMT is discussed. In the long-mean-free-patfynction f(z) in tensor notation has the form
regime, velocity space diffusion and inelastic processes
(right-hand side of the DKEproduce OI2|y smallﬂchanges of v of 1 _ﬁ_J( Dil of Fif) _t+0. @
the distribution function within one “bounce” time and, az'  J oz az!
therefore, stochastic orbits can be discretized with respect to
one of the phase space variables. For this purpose, Pbinca}—@
cuts are introduced and the concept of a regular map for drif(" X 5
orbits and of a stochastic map including all random perturd =1:--3, themomentum space variablez,=|p|, and,z
bations is discussed. In Appendix A, it is briefly outlined =A=py/|p|, being the gnomentum imodulus and pitch, re-
how to transform the DKE to an integral equation describingSPectively, and the time’=t. Also, V' is the velocity of the
the conservation of a pseudo-scalar particle flux density. 1§4iding center motion in coordinate-momentum-time space
Sec. IIC, an appropriate Monte Carlo method to solve thidPhase-time spage
second kind_ Fr_edholm _integral equation by averaging over Dij:Dij(Z):Dg+Di(j2L’

Markov chains is described.

In Sec. Il A and Appendix B, the concept of local mag- Fi=Fi(2)=FL+ F‘QL, 2
netic coordinate systefss introduced. This concept allows o o
for a clear separation of slow cross-field transport from ther® the components of the diffusion tensor and of the friction
fast parallel motion, and thus strongly reduces the problenforce; respectively, describing both the effects of Coulomb
of numerical diffusion and pertinent memory requirements collisions and of quasi-linear diffusion due to rf-heating,

In Sec. 1l B, a small Larmor radius approximation for dis- = »(2) is the particle sink rate due to inelastic processgs,

e set of variableg includes the guiding center coordinates
some general curvilinear coordinate systetnsx' with

placements of the footprints on the Poincenés due to mag- = Q(2) is a particle source, and is the Jacobian of the
netic and electric drifts is introduced. These displacement§cordinates%,¢) with ¢ being the gyro-phase

can be presented in the form of a Taylor series up to second a(r,p t)‘ B (2)

order in the Larmor radius expansion. The expansion coeffi- J= = =g ! p?, (3
cients are three-dimensinal functions of the position on the z.4)| B(x)

cut and of the particle pitch. This keeps the memory requireyherd314
ment in a reasonable range. Moreover, the dependence on the
radial electric field is of parametric type only. Therefore, . . S
iterations with varying electrostatic potential can be done Bj (2)=hB"", B*|:B|+§T‘9I oxi -

. . g
without recomputing the maps.

In Sec. IIC, a simplified Coulomb collision operator Here, e, ¢, /g, B, andh;, are particle charge, speed of

taking into account velocity space effects only is introducedlight, metric determinant of spatial coordinate systemon-
Again, the orbit integrated components of the diffusion ten-travariant components of the magnetic field and covariant

cprx . dh
P ik 2 @
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components of the unit vector along the magnetic field . 0B(x)
=B/B, respectively, ands’® is the completely anti- h(r)-VB(r)=h'(x) O (1D
symmetric unit tensofLevi—Civita symbo).

Introducing the relativistic facto, cyclotron frequency Whereh=B/B is the unit vector along the magnetic field.

., parallel velocityv, and magnetic moment Usually, several such surfaces are present in a stellarator. The
topology of these surfaces can be rather complex, and they
= /1+ e = eB have to be subdivided into a few regions with simpler topol-
mécz' ¢ mecy’ ogy. A convenient numbering of these regions in stellarators

can be performed with the help of a two-dimensiofD)
vector indexm=(n,m), wheren numbers magnetic-field
periods andm numbers the cuts within a single period.

. . From the set of the phase space varialtesne can
Wh?re Mo is the mass of a 'partlclg at rest, thg system 9%V5eparate one spatial variable, ex?, which is monotoni-
erning the dynamlc_s O.f drift particle motion in stationary cally increasing along the magnetic-field line. A convenient
electric and magnetic fields becomes choice is the toroidal angle®= ¢. The remaining set of five

Ap _pPAL-\?)
mo’y’ K= 2moB ’

)

U=

d . d . ) i variables is notated as where

—x'=—7 =V = =

X" qgZ=V@=vg, i=1.3 (6) ul=zl=x!, W2=722=x2, W=7=p,

d d - ID 4_ 5_ 5_ _6_

P a24:V4(Z):_e”b%U'gW, R ut=25=\, uS=2=t, (12)

Equation (11) imposes no restrictions on the momentum
space variables®=p andu*=\ and on the time variable
u®=t. With respect to these variables the cuts have the same
extent as the whole phase-time spac€&ogether with the cut

d d
N — _— 55_\/5
dt)\ d,[z V>(2)

_ 1w om Ly o 1,9InB (g Indexm, this set of variablesy!, describes the positions of
N m)pzvg ax  2%9 ox | the footprints of the stochastic orbit on the Poincatgs,
d d (m,u). Without collisions, each new footprint of a drift orbit,
—t=—75=V82)=1, 9) (m’,u’), is determined by the Poincaneap,

dt S
. m'=Mp(u), u"'=Up(u), (13
with the contravariant guiding center veloc'ﬂzg
whereM ,(u) gives the index of the next cut to be passed by

;1 i ik CBj (0® u JB the drift orbit. This can be one of two neighboring cuts, then
VgTgx | VBT T o=l okt o k] |- 10 sych particle is called “passing,” or it can be the same cut
n BVg 4 . ; be the sa
for a “trapped” particle. The mapping functiod(u) gives
Here, @ is the electrostatic potential ang as well asu are  the coordinates on this next cut. This map is a regular map,
to be expressed throughand\ using (5). because it is completely determined by the solution of the
equations of particle drift motiori6)—(9) through U, (u)
=Z'(zy,7pm) for i=1,2 andU},(u)=Z""Y(zy,,mpm) for i

B. Stochastic mapping =3...5,where
. Equatlon(l) describes both particle drift motion and ve 2 P =VizZ@n). Z(z0=2. 10
locity space diffusion as a single continuous process of par- g7

ticle motion along a stochastic orbit. In the long-mean-free- ) ) o ) )
path regime, the velocity space diffusion and inelastic! N€ coordln%tes gf.the'startmg poiaf, fo.r i#3, are deﬁned
processes described by the right-hand sid€19fproduce b}/ (12 E;”dzm:xm is given by the solution of11) for fixed

only a small change in the distribution function during theX~ andx

“bounce” time, which is_d_efined as t_he t_ime a particle _needs X3m_ (W=D, (2,)=0, (15)

to cross the characteristic magnetic field scale during the

drift motion described by the left-hand side @f). Due to  where the starting point is on the cot So, Eq.(15) is the

this fact, one can discretize stochastic orbits with respect tsame ag11) just resolved with respect t¢® and®,, defines

one of the phase space variables. For this purpose, Poincattee hyper-surface. Here, the full set of variables used in

cuts are introduced. These Poincaugs are five-dimensional 9,,(u) rather therx* andx? only, because in a more general
hyper-surfaces in the six-dimensional phase-time space afase, the cut surface in coordinate space is not necessarily a
the variablesz. For such hyper-surfaces it is required thatminimum-B surface but could be a function of momentum
each possible drift orbit intersects with at least one of thosepace variables as well. This would be the case if, e.g., a
Poincarecuts. Within the small Larmor radius approxima- parallel electrostatic field would be present. In particular, the
tion, the most convenient choice for these cuts are surfacesap over the time variable is rather simpldf;(u)=u5
where the magnetic field has a local minimum along the+ 7, wherer,,,= 7,,(U) is @ “bounce” time, which is the
magnetic-field line time needed for a particle transition from the auto the cut
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FIG. 3. Location of local minimasolid) and local maximadashegreached

FIG. 1. The geometry of minimum-B cuts in W7-AS. alongx® as a function o&?.

of B is presented as a function ®f in Fig. 4. Circles mark

local minima and squares mark local maxima.
The cuts have a nontrivial topology. This requires a spe-

m’. Thus, particle motion is discretized with respect to theagain, the dashed line marks the field line where the modulus

variablex® which is replaced by the cut inder.
Figure 1 shows the spatial location of the Poinoeues

within a field period for a real space configuration of stellar-
10 H - . . . .
ator W7-AS.” One can see, e.g., that along a specificcific organization of storage of orbit information. The topol-

magnetic-field Iine(VerticaI Iine, there exist two POinCéI’e ogy of cuts in the quasi_he|ica”y_symmetric Configuration
information about the transition between these cuts is conge topology of a straight stellarator. Note that there exists a

Starting from this point, a specific local magnetic coordinatethrough this region, passing orbits are mapped between cuts
located in neighboring magnetic field periods. For details see

system is used, such that the coordinatesindx? stay un-

changed along the magnetic field line. This kind of coordi-ggc. 1 A.

nate system is discussed in Sec. Ill A. Figure 2 shows the | the presence of weak collisions and quasi-linear dif-
fusion characterized by time scales> 7, OF 7o > Tpm,

number of cuts as a function of andx?. In this configu-
ration, the number of cuts is in the range of 1-4. The daSheﬂespectively, the map has to include a small random pertur-

line atx'=195 cm indicates the starting position for scanspation of the particle coordinatesu’ (u) which describes
overx? of local minima and maxima reached alaxg(along  the effect of these diffusive processes

the magnetic field ling They are presented in Fig. 3. Here

1.05
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FIG. 2. Number of cuts along the magnetic-field line within one magnetic-
field period as function of local magnetic coordinaxésandx? for W7-AS. FIG. 4. Modulus ofB vs x® along the dotted field line in Fig. 3.
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where the Jacobialy, is expressed through the normal com-
ponent of the six-dimensional velocif$)—(9) with respect
to the Poincareut

B Vi(zy,)dS m()
Im(u)= Ul dw =J(2)V(2) —— , (18

Z=2Z

m

where & is the element of the hyper-surface. The explicit
expression fod,, is given in Appendix B. The other quanti-
ties in(17)

Ton() = f:’mdr W(Z(zm, 1),

Om(U)=JQm(u), (19)

Qu(W)= fofb”‘era(zm.r)),

FIG. 5. The geometry of minimum-B cuts in QHS.

are the orbit integrated sink rate{<1) and the orbit inte-
m’ =M, (u+ du(u))=M(u), grated source, respectively, ands(u—U,)=s(u*
, . —U0%)---6(uS—1U2). Angular brackets:--) denote the av-
=Up(ut 8uy(u))=U (u). (16)  erage over random perturbatiofis' which satisfy

Therefore, such a mapping becomes stochastic. The random iN_ A’ i oy o'’

perturbations entering the stochastic niaf) have been ob- (OU)=Fn, (ou'ou)=2Dy’ 20
tained from the drift-kinetic equation in Ref. 5. Also in this wherei’=i andj’=j for i, <2 andi’=i+1 andj’' =]
reference, the drift kinetic equation has been transformed te-1 fori, j>2. Note that in the long-mean-free-path regime,
an integral equation describing the conservation of thehe higher order moments of the random perturbatiéa's
pseudo-scalar particle flux densify, through the Poincare produce higher order corrections to the approximate equation
cuts. Following the lines of Ref. &see Appendix A this  (17) over the small parametey,,,/ 7., and, therefore, are not

equation can be written in the following form: important. This leaves a significant freedom in the definition
of éu'. A particular form oféu' convenient for Monte Carlo
Cp(u)=> fd5u<5m,,{,,m(u)5(u’—Um(u))) modeling is
m
_ su=v2alle+ 7 (21)
X(1=Vy(W) (T (1) + Op(W)). (17) e
Herel' ,,=dN/27wd°u=J,f, where &N is the number of par- where the matrixy, satisfies

ticles passing through the element of the cut area a*all 5,=DI (22)
dutdu?dudu®= dx*dx?dp d\ in coordinate and in momen-

tum space during the timet & du® due to their drift motion. and &; is the set of independent standard random numbers
This quantity is proportional to the distribution functidn ~ satisfying the relations

(&)=0, (&¢&)=9;, (23

where g;; is the Kronecker symbol. The orbit integrated dif-
fusion operator coefficients i(20) are given by

Fu=Fn J_WJ Dih. (24)

Em:f A7) FN(Z(zm 7)),
0

D= f " drc(7)el(NDM(Z (20, 7)), (29
0

wherec, is the transformation matrix from the local coordi-

nates on the trajector¥(zy,,7), to Lagrangian coordinates

1 z, (coordinates of the trajectory starting point on the Poin-
carecutu and trajectory parameter, see Appendix A This

FIG. 6. The same as Fig. 2 for QHS. matrix satisfies the equation set
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V' (z")
0z’

by the stochastic magl16) with (m,u)=(m,,u,) and
' (26) (M4 1,Ugs1) =(m’,u") [function (33) is the probability dis-
tribution function for this transitiohand by sampling the
and the initial conditions on the c@equation fori=3 is not  weight
used

J_.
R~ —
¢9Tck( 7

7' =2(zy,7)

Wiy 1= Win(Uy , W),

. : 0Dz P (2 —
T(0)=6,—Vi(2) a”z“ﬁ )( Vi(z) am,( )) , (Win(Uie W) = (1= (u) )Wy (35)
2= %m This is realized by puttingv,, ; to w, with the probability
i£3. (27 (1-vpy(u)) and putting it to zero otherwise. In the second

] ] ] ) ] case, the Markov chain is terminated. Presenting the source
The solution of(17) is required mainly for the computation 0,(u) as

of various phase space—time integrals of the distribution ©) ©)
function which take the formh Om(U)=woPr’(u), Pr’(u)>0,

J dtJ’ d3pf BrA(r,p,t)f(r,p,t) > fd5uP<mQ>(u)=1, (36)

B 5 B - — where the initial weightw, with |wg|=const satisfies
_wa d ZA(Z)_ZW% j Ul (W Am(u).  (28) signwo) = sign(Qm(u)) the initial point of the Markov chain

. . . . (mg, Ug) is chosen randomly so that
This form of integrals is a straightforward result of the

change of integration variablesto Lagrangian variables, (Bmmy8(U—Ug))=P{(u), (37)

introduced in Appendix A. 1A is a function of gyro-Rhasé, e.g., the rejection techniqusee, e.g., Ref. 25an be used

gyro-averaging is also implied in the expression Agf(u) for this purpose. Thus, the formal soluti¢84) is given by

1 [ 7om w an average over Markov chains
A= [ Tar [ donzzn.0. @9

Fm(u):<k21 Wk5m,mk5(u_uk)> - (39

Practically, it is not necessary to use the exact orb{2B) in
the majority of cases. It is sufficient to replagé€z,,, ) with

a simplified orbit containing only the parallel motion. In
more details, the assumptions used for the computation og
averages are described in Appendix C.

Practically, instead of ,(u) various phase—time space inte-
rals of this quantity are computed within the Monte Carlo
rocedure

2w > fd5urm(u)Km(u):2w< gl kamk(uk)>.

C. Monte Carlo algorithm m (39

The integral equatiofil7) is of the type of a second kind
Fredholm integral equation which can be solved with a stan!" particular, the flux densnj{“m (u) is also apgroxmated
dard Monte Carlo method. For this purpose the equation i§Y Such an integral withA, m(u)=1/(Au*--Au®) for m
written in the following operator form: =m’, u''—Au'/2<u'<u’'+Au'/2 and Am(u)zo other-

N wise.

Fin(u) =K(T (u) + Qm(u)), (30 Note that the Monte Carlo procedure described above

contains as a particular case the conventional MC procédure

whereK denotes the integral-sum operation ot sl
if instead of the minimum-B cuts one uses the cutst,,

"N , =ty+ mAt whereAt is the time integration step of the equa-

A (u)= PUK A 1 0

e (U7) zm: f FUKn m(U7 U An(U) @D tion of drift particle motion andn=1,2,3,. .. is the number
.o , _ of the integration step. In this case the regular rogifu) is

Kinr m(U",U) =M m(U”,u) (1= vm(U)), (32 optained using a step integration mettiedy., Runge—Kutta

M U W) =(Sr o S(U — U (). 33 instead of using the interpolation of the stored map as it is
(U W)= (O 0 5 m(W)) 33 done in the present paper.
The formal solution tq30) is given through the series

o Ill. MAPPING IN STELLARATOR GEOMETRY
=, RkQn(u). (34) _ _

k=1 A. Local magnetic coordinate systems
In order to construct the statistical estimate of the solution, In a general magnetic field topology, the particle motion
one introduces test particles characterized by their positionan conveniently be described using a set of local magnetic
(m, u) and by their statistical weightv. Then, a Markov coordinates< instead of a unique coordinate system for the
chain is the sequence of particle positions and weigis whole plasma volume. For such coordinates, the requirement
Uk, wy) wherek=0,12... . Each new position and weight is that two of these coordinates satisfy the magnetic differ-
(My41, U1, Wiyq) are determined from the previous ones ential equation
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h-Vx'=0, i=1,2. (40) axXt  hR(XI, X2 ¢")

r 1 w2 7\
In such coordinate systems the fast parallel motion leaves the det NFXLX500)
coordinatext andx? unchanged while the small cross-field axXt  h%(XL,X2%,¢")
particle displacements due to the drift during the “bounce” ¢9_<P': W: (44
period are directly given by increments of these coordinates,
Ax! and Ax2. Therefore, relatively large relative errors in and the initial conditions
A_x1 and Ax? do not introduce significant numerical cross- LR 7 ¢:0)=R, X2R,Z,¢;¢)=Z. (45)
field transport. This is a positive feature which is not easily R .
realized in real-space coordinates. Therefore, such a coordi€reh™(R.Z,¢), h*(R,Z,¢) andh“(R,Z, ¢) are the contra-
nate system allows to reduce the computer memory necega”a”_t components df in the cyllnorlcal coordinate system.
sary for the storage of particle orbit data which in turn isEduation(40) can be checked using the group property of

needed for the orbit reconstruction. characteristics,
Ina genoral magnetic fielq, two families of Iioear!y in- XI(XYR,Z,¢0;¢"),XAR,Z,0;¢"),¢":¢")
dependent single-valued solutions to the magnetic differen- i ,
tial equation(40) do not exist unless the magnetic-field lines =X(RZ,¢;9"). (46)

are clo_seo[closed at i_nfinity, in particular In a special_case Taking the derivative 0f46) with respect top” and putting
with existing magnetic surface®0) has only one family of  ,7— ; and o’ = ¢, in the final expression with the help of
such solutions. These are surfaces of constant magnetic fluys) and (43), one obtaing40).

a quantity which is used as one of the coordinates in a flux \yitiple local coordinate systems permit to exploit the
coordinate system. Therefore, in order to use the solutions Qidvantage of the Monte Carlo method to model particle mo-
the magnetic differential equatidd0) as coordinates in the tjon in the most convenient coordinate system. The final po-
general case, it is necessary to introduce a surface which cUion of a particle, which is needed for statistical accounting,
the magnetic-field Imos. .ThIS cut is called roference Cut”js obtained by gset of coordinate transforms. For the pur-
and serves as a periodic boundary separating the regiopgse of statistical accounting, the “preferred” coordinate
where the functiong® andx? are single valued. For toroidal system domains are introduced as follows,< ¢< @, 1.

magnetic field configurations, this can be a toroidal @ut, The link between the neighboring LMCS is obtained with the
=const, wherep is the azimuth(toroidal angle of the cylin-  pelp of (46)

drical coordinate systenR(Z,¢), andR andZ are the ra- i i P
dius counted from the main axis of the torus and the distance  X(n=1)=X'(R.Z,@; @n+1) = X' (X{n) : X(n) » @n s Pn=1),
along the main axis of the torus, respectively. For stellara-

o . . 2w
tors, it is more convenient to introduce several reference j=1,2; x?nﬂ):x?n)IW. (47)
cuts,
Here the subscriptn) has been introduced in order to dis-
_ :27'”‘ tinguish between different LMCS. If stellarator symmetry
P=@n, Pn ) b L . .
N exists and all magnetic-field periods are equivalent, such a
variable change can be described by two sets of functions
n=0,... N—1, (41) _ L,
I — |
X(n+1)= X (Xny X)) (48)

whereN is the number of toroidal stellarator magnetic field
periods. In this wayN local magnetic coordinate systems W
(LMCS), each associated with its own cut, are introduced. _ ) 2

Since the domains of coordinate systems< o< ¢,+ 27, XL(Xl,XZ)EX'(Xl,XZ,O;iW>, (49
overlap, the particle position can be uniquely described in a

few coordinate systems simultaneouéultiple Coordinate ~ defines the magnetic-field map in positive X and negative
System Approach by the cut indexp, and the set of local (—) directions, respectively. If stellarator symmetry is de-
magnetic coordinateé, x?, x°) associated with this cut. stroyed, the sets of mapping functions have to be defined for

ere

The parallel variable is given as each period separately.
Since in local magnetic coordinates the slow cross-field
X®*=p—¢n, (42 motion is clearly separated from the fast parallel motion, the

only source of cross-field numerical diffusion can arise from
a coordinate change. Therefore, the mapping funct{d8s
are reconstructed numerically with high accuracy using a
fine mesh of data points and bi-cubic splines for interpola-
tion. Since these functions are two-dimensional, the require-
ment for computer memory stays within reasonable limits.
It should be mentioned that multiple LMCS place no
X=X(R,Z ¢ o), 1=1,2. (43) _restrictions on the topology of the magnetic field, 'Fhus aIIowj
ing the treatment of island structures and ergodic magnetic
Functionsx* andX? satisfy the magnetic-field line equations field layers as well as regular magnetic surfates. the

and the local magnetic coordinatg$ and x> are defined,
respectively, as cylindrical coordinatBs andZ’ of the pro-
jection along the field line of the particle positioR,Z, ¢) to
the reference cup= ¢, . Formally, this is done with help of
the characteristics of the magnetic differential equati),
functionsX*(R,Z,¢;¢’) andX?(R,Z,¢;¢"), as follows:
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same time, for configurations with embedded magnetic surmentump, the dimensionless magnetic fiel®R] and the di-

faces only, where Boozer coordinat@sd,¢) can be estab- mnensionless electrostatic potentiab  are  introduced
lished, the definition of LMCS is trivial according to

Xj-:w' X2:0_L(QD_QDn)| T:p_ot ﬁzﬁ

X3=o—o¢,. (50 Mo’ Po’
Here.= () is the rotational transform angle in units of2 B E $— @ (53
¢is a flux label and is a poloidal angle. The magnetic-field By’ T’

map(49) is also simplified, respectively, wher@, is the starting value of particle mo-

XL (xtx?)=xt, mentum, B, is a reference magnetic field, arid is the
plasma temperature. Hede~ 1 is assumed. Introducing also
X2 (xL,x2)=x2+ o(xY) 2_77 (51) the normglized magnetic and electric drift velocitigs and
- N o according to

With the help of multiple local magnetic coordinate sys- A
tems, the numbering of minimum-B cuts is performed with {,iB P
two indices, 6,m)=m, wheren is the index of the “pre- ZB\/a
ferred” domain of LMCS(magnetic-field periodand m is

2

2>\2(s”k—h‘h,g'ik)‘9—h.k
X!

the index of the minimum-B surface region within this pe- 2 ijk logB
riod. For unambiguous indexing, these surfaces are split into +(1=A9)eh axk |’ (54)
regions in such a way that no magnetic-field line intersects
such a surface twice within a magnetic-field period. To en- ‘ H?2 Y

. - : i P ijk
sure this, the same minimum-B surface has, if necessary, to 0g=——=¢"h;—, (59
be split into a few regions within the field period. It is also 2BVg X

split into different “cuts” by the reference cut if the given respectively, the equations of moti¢®8)—(8) are transformed
surface extends through the chosen boundary of the magnetig

field period. _

dx' N N

o —Peletagle, =12, (56)
B. Poincare’ mapping in small Larmor radius dx3
approximation e PR3, (57)

The unperturbed manm(u) can be constructed now in .
LMCS containing the starting point within its preferred do- d_p: ag B a_‘ﬂ_ (59)
main. If the end point belongs to the same preferred domain ~ d7 2p “Box"

the spatial components of the Poincarap(13) can be writ- ) . .
ten as d\ 1-N°(1dp 1 ,dlogB

= PP S sl (59
dr AN lpdr 278 X

UnAw=ub?+ AxpAu), (52)
where
whereAx}? are displacements of the footprint. As it will be

seen below, these displacements which describe the effects of _Po di)% + pee(d— tho) (60)
the magnetic and electric drift can be expanded in a series £ po dy PET PEE o

over the Larmor radius. If the end point belongs to the “pre-
ferred domain” of a different LMCS, coordinat€52) must

be _transformed using the rnagnetit_:-field mappiag) or a o po dD ()
series of such transforms if a particle travels through more  PB=Po Po: PE:F_O dio
than one magnetic-field period during its bounce time.

Here

The momentum space components of the Poinozap, Po d2<i>(¢o)
U3 (u) andU?(u), can be obtained using the conservation PEETG. A (61)
of the magnetic moment5) and of the total energyw 0 0
=myc?y+ed. Po 1 2T

In the following it is assumed that the electrostatic po- Po= \/m po=w—0 M’
0 C

tential ® is constant along the magnetic field=® ()

where = y(x*,x?) is the flux surface label, and that ener- eB,
gies of particles are nonrelativistip?< mécz. In this case, Weo="—, (62)
one can introduce three scaling parameters fo¢ and MoC

presentAx' in the form of the expansion over these param-and iy is a starting value of the flux surface label. The so-
eters. First, the normalized time the dimensionless mo- lution to (56)—(59) is obtained using starting conditiorfs
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X 10_7 0.06

~

91 -0.5 0 0.5 1

A FIG. 8. Displacement of particled .., vs particle pitch\ without radial

electric field.
FIG. 7. “Bounce”-time 7, vs particle pitch\ for the minimumcC in Fig. 6.

boring maxima—A and D—and at the saddle-point marked
with B. This behavior has to be handled by subdividing the
interpolation range.

It should be mentioned that for small Larmor radii, the
mapping procedure is equivalent to tracing the contours of
the parallel adiabatic invariahwith deterministic transitions
. 63) between different classes of trapped particles. In this ap-

~ proximation a re-scaling of the Larmor radius is allowed
Since all three paramete(61) are proportional to the Lar- W!th.OUt consequences for the shape of the or.bits. Actual!y,

) . , within the mapping procedure the Larmor radius and colli-
mor radiuspo, _the displacements are presented in the formsion terms can be scaled with the same factor. This is dem-
of a Taylor series up to second order termg¢ onstrated in Sec. IV D. Thus, even high energy ions or a very

=1 andy= . Defining the normalized bounce time which
is independent fronp, in the zero-order Larmor radius ex-
pansion asrpm= TpmPo /Mo, the displacementdx' are ob-
tained as

=Tpm

IAX IAX strong radial electric field can be treated by this approach as
Ax‘m= m) PE+( m) PB long as one assumes conservation of the parallel adiabatic
IPe |4 I8 /o invariant. As it is known, the transition between classes of
2 i 2h i particles are not deterministic as soon as one assumes the
I“AXp, 1/(9°Axy, "
+|————| pgpeet = | ——o" pé gyro-phase to be random before the transition. Nevertheless,
Ipg IPeE/ 2\ dpg 0 in the present application to electrons, the presence of Cou-

2Ay L[ 2Ax Iom.b.collisions intrqduces an even higher uncertainty than
+( m ) g pet _( Zm) pé, (64) collision-less transition probabilities. Therefore, the usage of
dps Ipe/ 2\ dpg /, deterministic transitions is fully justified.

The 3D interpolation of the coefficients ii®4) is per-
where (--)o denotes that the value fgogg=pg=pgg=0. formed with quadratic polynomial interpolation on the equi-
Here, only nonzero terms are listed. The expansion coeffidistant grid in the coordinate space'(x?) and with a non-
cients are three-dimension@D) functions ofx, x? and\. equidistant grid over the particle piteh This grid is fitted to
Thus, usage of the local magnetic coordinates reduces thee behavior of the bounce time. .
amount of necessary storage to amounts reasonable on mod- The reconstruction of particle displacements;, with
ern workstations. Moreover, since the radial electric fieldthe help of the Taylor serie$4) is shown in Figs. 8 and 9
profile enters only through the parametegsand peg, Eq.  for W7-AS without and with a radial electric field, respec-
(64) allows for iterations with a varying electrostatic poten- tively. Here, the reference magnetic fieR)=25 kG, the
tial during an MC run without any need for reloading the particle kinetic energyw,=8 keV, and the radial electric
maps. Note that one needs the knowledge of the flux lgbel field E, =393 V/cm. The grid size in coordinate space is 120
only for the description of the effects of the radial electrictimes 120. The reconstruction of the pitch angle dependence
field. If these effects are small, the assumption of existencés performed with 60 grid points in the trapped region and
of embedded magnetic surfaces is not necessary. with 20 grid points in the passing region. This allows to keep

The dependence of the bounce timg, on the particle the interpolation error below 1%. One can again see the
pitch \ is shown in Fig. 7 for a specific minimum denoted strong influence of neighboring maxima and saddle-points.
with C in Fig. 4. One can see the rather “rich” behavior In the case with a radial electric field, one can also see that
including logarithmic singularities located at the two neigh-the displacement reflects the behavior of the bounce time in
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02 1 49 of  pf
— _—  _ n2nbp _—
| St(f)= 7 5, PDE <p>(&p mOT)
+DY i 1-\? ot 65
= -0.2 ¢(p) ) (65
(&)
o E-04 Then, in zero-order approximation over the Larmor radius,
z there exist only three nonzero components of the orbit-
_e-06 integrated diffusion coefficient®5)
< 0.8 =~ Mo
o DER(u)= " DE(P) Fom(X" X%\, (66)
1t
AN mo XX 1,2
_1 2 N N N DCm(u)= FDC (p)Am(X 1X 1)\)1 (67)
- -0.5 0 0.5 1
* EP P Spp
FEm(u)=——=Dg}, 68
FIG. 9. Displacement of particles\x},, vs particle pitchx with radial omf ) meT cem 68
electric field.
where

(1—>\2)2f7bm drn'2

Am(xlile)\): )\2 1_)\/2

Fig. 7 very well since the electric drift velocity does not €9

depend on particle pitch.
In Fig. 10, the variancg20) of \, (S\?), after one
bounce time is presented as functiomofThe exact form of

does not depend op. Here A and \’ denote the starting
value on the cut and the value on the trajectory, respectively.

i PP AN i
the collision integral is discussed in Sec. IlIC. It has to bes'nceDC andD¢" do not depend on and their dependence

1 2 riqi ;
mentioned that only derivatives of this quantity show a sin-oN X and X ongma}tes from dependencies on the back-
gular behavior. ground particle densitp and on the temperatuiie the nec-

essary storage is three-dimension@he explicit form of
C. Coulomb collisions these coefficients can be found, e.g., in Ref) Tais is true

In the present realization of the code, the effect of Cou-2lso for the components of the deviatit##). Thus, the stor-

lomb collisions is taken into account in velocity space only29€ requirement for the “stochastic” parameters of the map

. =i i . "is also reduced to 3D, because complex dependencies of de-
and the spatial components bt and 7, are neglected in " . .
. . viation and variance on the momentum modulus can be fac-
the stochastic map. Therefore, only the strongest partld?orize q
transport effects stemming from the magnetic-field asymme- ' . .
. . . In the following, for the computation of the mono-
try are correctly described. Assuming the scattering back-

ground plasma to be an isotropic Maxwellian, the local formenergetic transport coefficients, the collision operator is fur-
of the collision integral is ’ ther simplified by puttingDg’=0 andD&= v, /2 with v,

directly prescribed.

x107° IV. APPLICATIONS AND BENCHMARKING

A. Collisionless orbits

5l ] In Fig. 11 the footprints of a trapped particle orbit on
minimum-B cuts together with Poincaggots of the mag-
netic field are shown. It should be mentioned that a particle
orbit in general leaves many footprints on Poinceuiés dur-

A ing a complete revolution in the trapping regid¢mapped

< gt 1 particle or over the poloidal anglegpassing particle—

K bounce period in the usual sense. One can observe this from
“splitting” of the orbit in Fig. 11. With a radial electric field
(see Fig. 12, trapped orbits are closed, as expected. One can
also see in both figures that the shapes of orbits obtained
1T ] from mapping and obtained from direct orbit tracing are
practically the same. On the other hand, from the evolution
of the pitch angle with time shown in Figs. 13 and 14 it is

-1 -0.5 0 0.5 1 seen that the orbits are different. They coincide with each

A other for a limited time only. The reason for this is that the

FIG. 10. Variance ok, (6\?), versus after one “bounce” time. The ratio ~ 9iven orbit belongs to a particle going through a few transi-
between connection length and mean-free-path i'10 tions between different trapping states. First it starts with a
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FIG. 11. Footprints of a trapped particle orbit on minimum-B cuts togetherFIG. 13. Time evolution of particle pitch for a trapped particle with
with Poincareplots of the magnetic field. The starting values are0.2 and starting values as given in Fig. 11 without a radial electric field. Comparison
w, =8 keV at the positiorx!=206 cm,x?=0.01 cm without a radial elec- between direct computatiafloty and mapping proceduret).
tric field. Comparison between direct computatigiots and mapping pro-
cedure(+).
mum deviation towards the center and towards the last
closed magnetic surface, respectively. With the help of the
“toroidal banana orbit” crossing 7 minima during a complete mapping technique, the computation of collision less orbits is
bounce period, then it becomes blocked within three minimasufficiently fast to scan the whole phase space volume for the
and drifts out of the system. This is better seen from Fig. 19resence of a loss cone. This could be of interest for
where the time evolution of the flux label is shown. Sucha-particle confinement studies.
kind of orbits are unstable in the sense that the moment of
transition can be strongly influenced even by small errorsB. Calculation of Green’s functions
On the other hand, these errors are anyway well below the
stochastic modifactions of orbits by Coulomb collisions.
Some orbits of trapped particles in QHS are shown in

In various applications of solvers for the DKE, the prob-
lem can be reduced to the computation of Green’s functions
. PR ; _of various types. Such applications are, e.g., the computation
Fig. 16. Due to quasi-helical symmetry, the poloidal drift ot o cjassical transport coefficiertshe computation of
veloc!ty in this device is much higher Fhan the radial drift quasi-stationary nonlocatonvectivé fluxes and of power
velocity. Therefore, almost all these orbits are super-banangs_yenosition profiles of supra-thermal particles generated by
which can be very fat and sometimes those orbits are nql, jiotrequency heatinf:® This results in two types of prob-
closed within the confinement region. The thickness of thesf'ems, initial value problems and stationary problems. By
orbits is shown. in Eig. 17 as function of thg partic!e pitch.. definition, these Green’s functior(z,,z) satisfy the drift-
The two peaks in this plot correspond to particles with maxi-yjneyic equation(1) with s~function source terms specified as

0.4

X [em]

_15

180 190 200 210 0 05 1 15
x' [cm] t[s] % 10

FIG. 12. Same as Fig. 11 with the presence of a radial electric Eeld FIG. 14. Same as Fig. 13 with the presence of a radial electric Eeld
=393 V/cm. =393 V/cm.
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FIG. 17. Maximum particle deviation over the flux label from the starting

FIG. 15. Time evolution of flux labejs without electric field. magnetic surface vs particle pitch for QHS. Same starting values as in Fig.

16.
1
Qinit(2)= 2md(2) 2732 2 Z %), 70 \where ®,,(2)=0 is the equation for a boundary surface
such thatV®,,, is the normal to this surface. In the case of
_ Vst — ... _ tic surfaces,,,= yy— i, wherey, is the
S(Z =2 - 8(—7D), 71 embedded magne hou b b
Qual 2)= 3 mJ(2) ( o)+ o 7 flux label of the boundary magnetic surface.

for an initial value problem and a stationary problem, respec- ' momentum space, boundary conditions follow from
tively, where v, is a constant source rate. In addition, ho- the absence of a particle flux through the boundadigtz)
mogeneous boundary conditions of various types have to bg 0- Namely, the Ehysmaé (Z:Iomaln in momentum space is
met. limited by(I)p(z) Z*(1—-(2>)%), and the appropriate bound-
Assuming that there exists no flux of incoming particles@’y condition is given as
through the outer boundary of the plasma, one boundary con-
ition i G y4
dition is DIJ —- (V'+F )G)__p( ) =0. (73
®,(2)=0

Vi(2)G(z, z)—bmu =0

9z Ppof2)=0 s o P
° In addition, G is limited at infinity, lim4_ ,.G=0. For the

aCIDbou(z) computation of convective losses, additional boundary con-
for  Vi(2) <0, (72) " dition may be required in the thermal region

G(20,2)|9(9=0=0, (74)

where®(z) =z*—p1, andpr=(2m,T).

All boundary conditions formally result in a specific
modification of the kernel in the integral equatiity). Con-
ditions (72) and (74) provide the additional factors
O(Pyofzmr(u'))) and O(Dy(z,(u’))), respectively,
where® (x) is a Heaviside step function.

The consequence for Monte Carlo operators is that test
particles which cross the respective boundary are deleted and
that the Markov chain is terminated. In addition, for time
depending problems, the termination of Markov chains with
time [additional factor® (t,— z°+ z3) in the kerne] is intro-
duced wherd, is the the evolution time. Boundary condi-
tions in momentum spacé/3) can be realized in Monte
Carlo operators, e.g., by reflecting test particles from the cor-
responding boundary.

FIG. 16. Footprints of orbits in QHS with starting point positiorh |nt_egrati0n ofé-functions along unperturbed orbits using
=10.217 anck?®=—0.28 and Larmor radiup,=0.001. (A3) gives
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(W ffbmd 1 8
u _—
"o T2 (zm(u), 1) 7t
X 8(ZH(zm(U),7) = 20)" - B(Z%(Zm(U), 1)~ 20) 6l
Tom 1 9(z)
= - = g 5r
] 3@ W2 Y
a4
X 8(u* = Ug(29))- -+ 8(u* ~ Ug(20)) (7= 7o(20)) ~ |
1 1 4 4 a 3
=6(U”—Up(Zp)) - o(U™—up(Zp)). (79
The Lagrangian variableg are defined in Appendix A, and 2
up and 7o are the solutions of the equation $&{z,(u), ) 1t
=zy, i=1,...,5, which gives the projection of the source
point z, onto the Poincareut along the orbit. Thus, the orbit 0 - - - -
integrated sourced9), Q,,, are obtained fron70) and(71) 0 0.2 0.4 ; 0.6 0.8 1
v
as L

init 1 FIG. 18. Normalized diffusion coefficiem , /DP***®ys time in units ofrc
O (u)= > S(u—up), for different values of normalized rotation frequer(®y7-AS). Results from
™ mapping(solid) and direct MC(dashedl

Vstat 1 4 4

o y) = ——s(ut—u3)---S(u*—uy), 76 _ _ . .

m tw 27 ( 2 ( o (76) bution of a given test particle to the value of € ¢)? is
respectively. This kind of source have an intuitively obviousCOmPuted when the time variable’ exceed .
realization in the Monte Carlo algorithm, resulting in the fact !N the following, the flux label) is defined as the value
that Markov chains are started in the projection point or! the big radiusk of the flux surface point on the outer side
Poincafecuts. For an initial value problem, the starting time Of torus withZ=0in the Symmetric cross-sectign= 0. The
of evolution,u®, is 7, and the test particle weight is ¢ ~1. ~ Magnetic axis position is given bf=Ro.
For a stationary problem, the starting weight ism)2 1 v The stqchast|c mapping technique ha; begn benph-
and the time variable® is ignored. marked against the conventional MC method in regimes with

and without radial electric field and against the field-line

integration methotl for evaluating transport coefficients in
C. Transport coefficients the 1k regime. For both MC procedures, a simplified Lor-

entz collision operator describing only pitch-angle scattering

For computation of transport coefficients, an initial valuer1as been used. The long-mean-free-path regime has been
problem corresponding to the sourc#) at the initial time . sidered with L./I=0.003 whereL,=2mRy/¢ and |

6_ . . ) .
momentz,=0 is considered. Here, the Green's functi®n  _,/;, are the connection length and the mean-free path,
itself is not of interest, but a moment of this function, ”amelyrespectively. Herev, is the perpendicular scattering fre-

H 2 — 5

the variance of the flux labe{(y— /) )rp =27/ d°2(4(2) quency. The computed diffusion coefficient has been normal-
— 10)°G(2,2), Where¢06: ¥(2o), is calculated as function ;a4 {5 the mono-energetic plateau diffusion coefficient,
o;jh_e etvplutlotr_1 tlntwet;:élszD. T_he p(irpen2d|CL;Iazrtd|ﬁuSS|%n tgo- DEIateau: wav/(l&Ro), wherep, =v/ o, is the gyro-radius.
eficient IS estimate > Lg“‘ﬁ “0))p/(2te). Substi-  pa radial electric field profile was chosen to keep the elec-

tuting A(2) = (4(2) — 40)“6(2°—t) in (28) and ignoring the ¢ rotation frequencywe=c(d®/dr)/(rB) close to a con-

change iny(z) during a single bounce time, one obtains g3t along the small radius= — R,. Results for the nor-

) . 5 malized diffusion coefficient as function of a normalized

(=) >rp=2772n: J Ul (W) ((Zim(U)) = tho) evolution timet./7c are shown in Fig. 18 for the W7-AS

case. The difference between the results of direct MC and

Tm(U) 5 stochastic mapping is mainly due to the statistical error in
X dré(7+u°—t,)

o direct MC. The number of test particles was®*lnd 16,
respectively.
” 5 5 For benchmarking with the field line integration tech-
=k§1 ((4(zm, (U)) — o) “O (U7 te) nique the “effective ripple amplitude’s>? has been calcu-
] lated as
X@(te+ ’Tbmk(uk) u )> (77) g,n-VJ-DLRS ,
Here, Eq.(39) has been used to present the variance of the Eeff:\/gv—%ﬂvﬁmm.s., (78

flux label in the form of a statistical average over Markov

chains, (m,, uy, w,), where test particle weightsw, whereD, was evaluated for the ifregime(zero radial elec-
=(2m) 1, stay constant in absence of sinks in phase spacdic field). Here(---)y, s is an average over the volume be-
vo=0. Thus, within the Monte Carlo algorithm, the contri- tween two close magnetic surfaces. For an arbitrary stellar-
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0.015 linea® or nonlineat® 5f methods are used in the kinetic

modeling. Within these methods, the electron distribution
functionf is formally split into two partsf = fy+ §f, where

fo is the unperturbed distribution function of bulk electrons

0.01f and &f is the non-Maxwellian part of special interest. The
kinetic equation is presented in a symbolic form
©u8 of
VIE:LCf+LRFf' (79)
0.005¢

whereﬂc is the Coulomb collision operator describing col-
lisions with background ions and with electrons, dngk is
an operator describing the wave—particle interaction. In case
950 205 210 215 220 of small enough wave amplitudes, this operator is given by
quasi-linear theory? Using the separation df into f, and

of in (79), the equation fof is given as
FIG. 19. Effective ripple amplitudegéf2 vs major radius<! (W7-AS). Re- Sf

sults from mapping(solid) and from field line integrationdashed are ~ ~ -0
given. e ’ Vi Lot~ Lreot + vendf = Lrefo, (80

x! [em]

where vg is some effective exchange frequency which is

ator, e is substituted for the helical ripple amplitudg in taken to be small in the supra-thermal range of energies.
formulas for 14 transport coefficients for the standard stel- ~ If the total amount of supra-thermal electrons is small,
larator. In Fig. 19 the effective ripple amplitu@é? is plot-  the kinetic equation fof, together with the assumption of a
ted versus the major radius for W7-AS whereas the result fotocal Maxwellian distribution function leads to a set of one-
QHS is given in Fig. 20. The results from the mapping ap_dimensional neoclassical transport equations, which contain
proach and from the field line integration stay in good agreef?dditional magnetic surface averaged source terms of par-
ment. It should be mentioned here that for QHS the computicles Qn and energyQ,,
tation of 1k losses with MC procedures is rather delicate

since, on one hand, very low-collision frequencies have to be Qn=< f d3pveﬁ5f> =
chosen in order to avoid symmetric losses and, on the other M.S.
hand, it has to be ensured that the interpolation procedures in ~

the SMT code do not destroy the quasi-helical symmetry. QW:< f d*pwi Leof + vegof )>

140,
S ay

M.S.

D. Stationary Green’s functions =< J’ dSkaE05f> 1 'y, . (81)
In order to separate the problem of finding the distribu- ms S Y
tion function of supra-thermal electrons generated by localyere w, =myc?(y—1), S, I',, andT,,, are the kinetic en-
ized electron cyclotron resonance heati&CRH) from the  orqy, magnetic surface area, total fluxes of supra-thermal par-
problem of computing the particle and energy balanceticies and energy, respectively. Without the quasi-linear op-
erator on the left-hand side @0), this procedure reduces to
» the linear Green’s function approach given in Refs. 9 and 8.

55X 10 This approach is valid ii5f<f, in the whole phase space

; and leads to a linear scaling 6f with ECRH input power.
,’, Within this approach,sf is expressed through a Green'’s
2 d ] function corresponding t671) as
1.5¢ 5f(Z)=27Tf d5J(20)G(20,2) Lrefo( o), (82
Pu? with vg= 1.
1 The supra-thermal particle fluk,,, , is of particular im-
portance for the confinement since it can strongly influence
051 the radial electric field through the ambipolarity conditfon.
' Note that the procedure for finding the self-consistent radial
electric field requires the iterations of this field and, there-
0 fore, a relatively fast evaluation of the supra-thermal particle
1.9 12 121 ; 2z 123 124 flux T',, is necessary. The usual expression for particle flux
X defined in guiding center variables and flux coordindigs
FIG. 20. Effective ripple amplitudeZ? vs major radius<* (QHS). Results 6, ¢) can be transformed to the average over the Poincare
from mapping(solid) and from field line integratioridashed are given. cuts as follows:
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3 T T Vg-Vlﬁ ar oar
o= | o a0 ae e Tl
:J<ﬁpffdejfd¢fd¢u%¢“—¢&J§wg
Vi

= [ [ ot —urtvy vy

T

=27, fd5urm(u)5(t—u5)f "dr

0

X 5( lﬂ(Z(Zm,T))_ wO)Vg' V‘p|z=Z(zm,7-)

s 5 OO 0.2 0.4 0.6 0.8 1
=2w% fd ul' m(u) 8(t—u®) v,
X[O 2(z.,, _ -0 Z(z..,0 FIG. 21. Particle fluxI',, vs normalized flux labeky/ ¢, . The particle
[ (¢( ( m Tbm)) wO) (‘ﬂ( ( m ) energy ranges fromvg=2T, to wy=9T,, from bottom to top. The dotted
— 0] (83 lines are computed with Larmor radius and collision operator reduced by a
o factor of 2.
V. SUMMARY

Here, when integrating over, Egs.(14) for the particle or-
bits have been used. The energy flux is obtained in the same In the present paper, the stochastic mapping technique
way and it differs forml",,, by the factorw,(u) in the sub- has been developed and realized in a numerical code. With
integrand. the help of this technique, the drift kinetic equation is solved
Expression83) does again mean an intuitively obvious in the long-mean-free-path regime for a stellarator with arbi-
procedure for the evaluation of total fluxesee also Ref.)6  trary geometry and topology of the magnetic field, allowing
When the particle crosses a surface labeled wijtits weight  also for islands and ergodic magnetic-field layers. The tech-
is either added to or subtracted from the value of the flux omique has been benchmarked against conventional Monte
a given surface depending on the direction of the crossing.Carlo methods. The regimes with and without a radial elec-
The particular form of the exchange frequengy in the  tric field are well reproduced. On the other hand, the map-
thermal range of energies has little consequences for the r@ing procedure is significantly fasté?2 and more orders of
sult. In the present modeling, it is assumed to be infinite formagnitude depending on the complexity of the magnetic
energiesv,<T and equal to zero fow,>T. This particular ~ field). Note that the speed of the mapping solver is practi-
case ofv is realized with an additional boundary condition cally independent of the complexity and computational cost
for the Green’s function, Eq(74), and the second expres- of the magnetic field, therefore, the gain will be even more
sions in(81) have to be used. significant for configurations with a broad magnetic-field
In Figs. 21 and 22, particle and energy fluxes of supra-
thermal particles are shown, respectively. The particle source
is on the magnetic axis in the magnetic field minimum lo-

400

cated at the elliptic cross section of W7-AS. Trapped par- 350

ticles with a pitch value.=0.1 and fixed energies, rang-

ing from wy=2T., to Wy=9T, are generated there. Thus, 300

the supra-thermal particle distribution function is a stationary o50l

Green’s function corresponding 1@1). The source rate in

these computations wass,= Psourcd Wo Where Pggyrce 2 200!

=400 kW is the source power. The profiles of the equilib- =

rium parameters were the followingTo(r)=Tg(1.2 150F

—(r/a)?), ne(r)=neo(1.2—(r/a)?)?, @(r)=Teor*/ (€&,

whereTg =3 keV, ngp=3-10"% cm 3, anda=17.4 cm, re- 100

spectively. The computation of one such profile requires 500

from minutes to tens of minutes on a DEC Alphastation 500

depending on accuracy. Therefore, iterations of the radial 0 -

electric field in presence of a supra-thermal particle flux are 0 0.2 0.4 why 0.6 0.8 1
b

possible. From those figures one can also see, that rescaling
qf the Larmor radius and of the collision operator has praceig, 22. Energy flux",,, vs normalized flux labely/ s, (same values of
tically no effect on the results. energy as in Fig. 21

Downloaded 11 Oct 2002 to 129.27.161.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 9, No. 8, August 2002 Mapping technique for stellarators 3523

spectrum. Since the preloading procedure is relatively timavhere the transformation coefficienté(z&ziL/&zk satisfy
consuming, the method is most effective in a case wher26) and(27). The bounce timer,,(u), can be introduced
“global” computations of the particle distribution function as the smallest nontrivial solution of the equation
are needed, e.g., for the studies of kinetic effects of rf-
heating, or for tr?e computation of profiles of transport coef- P (2(Zm, 7om)) =0, (A5)
ficients for fixed magnetic configurations. The comparisonwith respect tor. Here,m’ labels all possible cuts. It corre-
with effective ripple computations using the field line inte- sponds to the change in the trajectory parametegeded to
gration technique shows that even for the very sensitivéeach the nearest cut along the orbit. This can be the same
quasi-helically symmetric configuration, the errors of drift cut as the initial one if the orbit belongs to a “trapped”
orbits in SMT are very small. particle. The particular value of the index' corresponding
The application of SMT to a global computation of to this solution defines a discrete mappimg=M(u) in
supra-thermal particle fluxes in a stellarator shows that thi&qg. (13). In the long-mean-free-path regime, the distribution
method is fast enough to allow for iterations of the radialfunction changes only weakly during the bounce time, i.e.,
electric field using the ambipolarity condition taking into ac- within the interval 0<7<ry,,,. Therefore, Eq(A2) can be
count fluxes from supra-thermal particles. Therefore, théntegrated ovetrfrom O to 7, assuming that the distribution
SMT combined with a neoclassical balance code will permitfunction f on the right-hand side is independent ©fThis
the self-consistent modeling of particle and energy balance iresults in

a stellarator with strong electron or ion cyclotron heating a(u’)

where the convective transport of supra-thermal particles T, (u')———=T(u)+ — ]B‘r%(u)rm(u)

plays a significant role. At the same time, it is shown that J(u) Jurou

convective fluxes are very sensitive to the detailed structure .

of the supra-thermal particle source. In the case of ECRH, - Wf'm(u)rm(u)—7m(u)

nonlinear effects of wave—particle interaction are dominant

in the formation of such a souré8The method for modeling +Qm(u), (AB)

this effects has been recently developed and will be included , , .
in future models based on SMT. wherem’ and u’ are given by(13), and the rest of the

notation is given by17)—(25). Since the terms neglected on
the right-hand side ofA6) are quadratic with respect to the
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This work has been carried out within the association oﬁhe integral

EURATOM with the Austrian Academy of Sciences. The

content of the publication is the sole responsibility of its , au’) " " "

publishers and it does not necessarily represent the views of L' (U7) a(u) :f dPu"(S(u"—u+ du(u”)))

the Commission or its services. Additional funding was pro- _

vided by the Austrian “Fonds zur Fderung von Wissen- X (L= wm(U) (T m(u”) = Qm(u")),
schaft und Forschung” under Contract No. P13495-TPH. (A7)

where su(u”) are small random numbers satisfyi(@0). It
APPENDIX A: STOCHASTIC MAPPING EQUATION should be mentioned that the quantifigsand Q,,, are small
in the first order overry,,/ .. Transforming thes-function

Using the fact that trajectorieg(z,7), are solutions to with the help of

(14), one can transform the DKEL) to a set of Lagrangian

iabl =(u,7), introduced as foll : d(Un(u
varla_ es;_ (u,7), introduced as follows S+ Su(u’)) = (Um(u))

Z':ZI(Zm,T), (Al) t?(U)
where the set,,=z,(u) is defined in the text aftef14). X O(Up(u) —Up(u”+ ou(u”)),
Equation(1) takes the form (A8)

of 1 9 of - and using(13), which implicitly definem andu throughm’

-7 ij 7 gl :

ar Iy ,;Z'L‘]m( Din ozl me) vi+Q, (A2) andu’, one obtains Eq(17). Note that in order to simplify

the notation in(17), the dummy integration variable’ was
where replaced withu.
()
‘]m:‘](z)a(_zl-):\]m(u) (A3)  APPENDIX B: METRIC DETERMINANT OF THE LMCS

In order to obtain the metric determinaxfy entering
(3), one notices that the only nonzero contravariant compo-
{aent of the magnetic field iB3=B- Vx*=B¥. Using

is the Jacobian of coordinate sgtgiven by(18). The Jaco-
bian (A3) is independent of. The components of the diffu-
sion tensor and the drag force are transformed according

the rules of tensor algebra, 1 9 9
. L ) . B= ___ i_ - ©_
Di=GleDX, Fi=clF", (Ad) VoB= g ax VOB T g o VBT, (B
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one obtains that the producf{gB¢ is constant along a line. Furthermore, one can neglect the variation of the elec-
magnetic-field line defined byx¢,x?)=const. Since due to trostatic potential along the field line. This means that the
(45) and (43) the coordinates® andx? coincide withR and  kinetic energy and, as a consequerg@re the approximate

Z on the reference cut/g=R there. Therefore, one obtains constants of motion. Thus one gets

x'B¢(x*,x?, f(x1,%x2,x3,p,N) = F (X2 PN ), c2
oo B ©2) ( P.A) = f(x! X% x5, P A ) (€2
B#(R(x),Z(X),¢(x)) with
where the azimuthal componeRt is considered iB2) as 1—22 1-2\2
— m

a function of cylindrical coordinates arR(x), Z(x), ¢(X)
are cylindrical coordinates of the point on the minimum-B B Bm
cut, p=x3=9,(u) (x are magnetic coordinates of this The last expression follows from the conservation of the
point). In the case of stellarator symmetpy=0 in (B2). In magnetic moment. For the moments one obtains

zero order with respect to the Larmor radius, the particle . 1
velocity is along the magnetic fieldg=v,h. Using the defi- <A>p=277f dpf d\p?Af
nitions of the Jacobiad,, and the hyper-surfac®,,, Egs. 0 -1

(18) and (15), respectively, and taking into account thgt

(C3)

: * 1 2mmyyB
-V9,=0, one obtains = fo dpfld)\m®(|)\m|_)\b)|:|—egA|rm|a
J :lezl)”B‘p(Xl,Xzy(Pn) ¢ (C4)
™ B(R(X),Z(X),¢(x))

R where
P°AB, (X" X%, ¢n)

~ MoyB(R(¥,Z(X), (X)) (B3) M= V1A, n=yl-om (o

Here p and A are momentum modulus and pitch on the ) .
minimum-B cut, respectively, and B,(R,Z,¢) In particular, for the parallel current density one gets

=RB‘P(R,Z_,<p) is the physical toroidal component of the  2meB (= 1 .
magnetic field. jiI=— J dpf AN m® (A = Np) [Tl sign(A ).
0 -1
0]
APPENDIX C: MOMENTS AND FLUXES (C6)
moments of the distribution function, line distorts bootstrap effects in the computation of parallel
currents. If this effect is of interest, the full orbit should be
. - = 1
A = | BpAf. c1 used with help of(28) substituting thereA(z) =euv(2) 8(z
(A f P €D —xH 82— x3) 8(28-1).

These moments of interest are the particle density, the paral-
lel current density and the kinetic-energy density whiris IA. H. Boozer and G. Kuo-Petravic, Phys. Fluigl4, 851 (1981).
introduced asA=1, A=ev, and A=m.?(y—1), respec- 2H. Wobig and R. H. Fowler, Plasma Phys. Controlled Fusion 721
tively. In order to reconstruct the distribution function and its ,(1988. o . .

ts away from a minimum-B cut. one uses the follow- A. Montvai and D. F. Dehs, inPhysics Computing '92, Prague, 1992
momen ; Yy . o ) (World Scientific, Singapore, 1993p. 417.
ing assumptions. The particle cross-field displacement due t@m. de Rover, N. J. Lopes Cardozo, and A. Montvai, Phys. Plasiné468
the drift and due to effects of collisions is neglected for the (1996. _
computation of particle orbits during one bounce time. This (Sl-g\gnKas"OV' V. E. Moiseenko, and M. F. Heyn, Phys. Plasmag422
me_ans that 9” _d'St_anceS Of the order of (_)ne magne_tlc'fle_ldA. M. Runov, D. Reiter, S. V. Kasilov, W. Kernbichler, and M. F. Heyn,
period, the distribution function expressed in terms of invari- phys. Plasmas, 916 (2001.
ants of motion in the momentum space can be consideredH. Maassberg, C. D. Beidler, U. Gasparino, M. Rome, W.-A. Team, K. S.
constant along the magnetic-field line, i.e., the distribution D%%%"”' N. B. Marushchenko, and S. Murakami, Phys. Plasmha295
fuqctlon In any .spaual point is taken to be the same as in thesg, Murakami, U. Gasparino, H. Idei, S. Kubo, H. Maassberg, N. Nakajima,
point on the minimum-B cut which has the same values of M. Rome, and M. Okamoto, Nucl. Fusiat, 693 (2000.
the magnetic coordinates andx?. For the reconstruction at ~ °M. Rome V. Erckmann, U. Gasparino, H. Hartfuss, G_fter, H. Maass-
a given point, one has to use this minimum-B cut where berg, and N. Marushchenko, Plasma Phys. Controlled Fu3@nll7
t_here exists no local maximum _Of B alqng the magnetic fieldhoy pommaschk, W. Lotz, and J. Keenberg, Nucl. Fusiopd, 794(1984.
line between the cut and the given point. 3. Nihrenberg and R. Zille, Phys. Lett. 229, 113(1988.

: . : 5 12y, V. Nemov, Phys. Plasmag 122(1999.
To simplify the notation, one can USeB,  isc Groponiand R, G. Litlejohn, Phys. Fluiag, 1996 (1984,

= B(p(Xl,XZ,(pn) for the toroidal physical component of the “A. I. Morozov and L. S. Solov'evReviews of Plasma Physi¢€onsult-
magnetic field on the reference cuB,=B(xy) for the  ants Bureau, New York, 1966Vol. 2, pp. 201-297. _
magnetic-field modulus on the minimum-B cut, armsi ?\A/\./i:;.stlg\; ?(gkaigé;VhltlockMonte Carlo Methods. Volume I: Basics
=B(x) for the magnetic-field modulus in the consideredis; \ “pnestrovskij and D. P. Kostomardiumerical Simulation of Plas-

point. All three quantities belong to the same magnetic-field mas(Springer Verlag, Berlin, 1986

Downloaded 11 Oct 2002 to 129.27.161.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 9, No. 8, August 2002 Mapping technique for stellarators 3525

V. V. Nemov, S. V. Kasilov, W. Kernbichler, and M. F. Heyn, Phys. Plas- ference, 810 October 1997, Jich, Germany edited by A. RogistetFor-

mas6, 4622(1999. shungszentrum lish GmbH, Jilich, Germany, 1998 pp. 111-114.

183, V. Kasilov, W. Kernbichler, V. V. Nemov, and M. F. Heyn, 26th EPS  2°M. F. Heyn, S. V. Kasilov, W. Kernbichler, H. Maassberg, M. Rore
Conference on Controlled Fusion and Plasma Physics, Maastricht]84 Gasparino, and N. B. Marushchenko, 26th EPS Conference on Con-
June 1999. ECA \ol. 23X dited by B. Schweer, G. Van Oast, and E. trolled Fusion and Plasma Physics, Maastricht,~148 June 1999. ECA
Vietzke (European Physical Society, Mulhouse, 199%. 1629-1632. Vol. 23] edited by B. Schweer, G. Van Oost, and E. VietzEaropean

183, Kasilov, inProceedings of the Seventh European Fusion Theory Con- Physical Society, Mulhouse, 199%p. 1625-1628.

Downloaded 11 Oct 2002 to 129.27.161.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



