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The Stochastic Mapping Technique~SMT!, a highly efficient method to solve the five-dimensional
drift kinetic equation in the long-mean-free-path regime, is presented in an application to
stellarators. Within this method, the dimensionality of the problem is reduced to four dimensions
through a discretization in one dimension. Instead of tracing test particles in the whole phase space,
test particles are followed on particular Poincare´ cuts. With this approach, the computation time is
reduced by a large factor compared to direct Monte Carlo methods. The SMT is applicable to
stellarators with arbitrary magnetic field geometries and topologies. It can be used for any problem
where currently conventional Monte Carlo methods are applied. In particular, it is well suited for
modeling the distribution function of supra-thermal particles generated by auxiliary heating
methods, for studies of stellarator transport properties and for a fast survey of a specific
configuration in the whole phase space necessary for an estimation ofa-particle
confinement. ©2002 American Institute of Physics.@DOI: 10.1063/1.1493793#
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I. INTRODUCTION

Particle methods are powerful modern tools for co
puter modeling of various kinetic phenomena in plasm
They can be used to compute the distribution function its
as well as different macroscopic parameters of the plas
The essence of these methods is based on the definitio
the distribution function as the particle density in pha
space. Thus, following the orbits of ‘‘all’’ plasma particles
the same as modeling the distribution function. Naturally
is impossible and also not necessary at all to follow litera
all possible orbits of the real particles. Instead, a relativ
small number of ‘‘test’’ particles is sufficient for that pu
pose. The main requirement is that this number is la
enough to ensure the presence of a sufficient number of
particles in each ‘‘elementary’’ volume of phase space. S
an elementary volume should on one hand be small eno
compared to the scale of the distribution function and on
other hand it should be not too small in order to keep
overall number of test particles below a reasonable limit.

In nonaxisymmetric systems, the drift kinetic equati
~DKE! governing the particle evolution is five-dimensiona
To meet the first requirement in such a high dimensio
phase space, the amount of test particles has to be big
addition, the time to follow test particles is of the order of t
relaxation times of macroscopic parameters. Typically, thi

a!Electronic mail: kernbichler@itp.tu-graz.ac.at
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much longer than the characteristic time scale of the in
vidual particle motion. In the case of the DKE, the time sc
of particle motion is in the range of either the bounce time
the collision time which are certainly much smaller than
typical relaxation time.

In addition to this, modern stellerators have a quite co
plex magnetic field geometry where numerous toroidal a
poloidal modes contribute to the magnetic field spectru
This makes a direct computation of the field and of the d
orbits ‘‘expensive’’ in terms of computing time. In addition
the restriction to a Fourier representation in flux coordina
does not allow for a proper treatment of such real sp
configurations which besides embedded surfaces also inc
island structures or ergodic zones.

Therefore, it is of high interest to develop a meth
which allows for a proper treatment of general magnetic c
figurations. The Stochastic Mapping Technique~SMT! is
such a method to solve the DKE in the long mean free p
regime. The method is capable of dealing with a gene
magnetic-field geometry in real space coordinates and sh
a strong gain in computational speed making use of a
cretization in one dimension, of local magnetic coordina
systems, of precomputed maps for the magnetic field and
drift orbits, and of a proper stochastic treatment of Coulo
collisions.

In the present paper, the SMT for stellarators is d
scribed in detail, various applications of this technique
discussed and the results of benchmarking with other m
8 © 2002 American Institute of Physics
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ods are presented. Basically, the applications of SMT are
same as of conventional Monte Carlo~MC! methods.1 In
addition, various weighting schemes developed for conv
tional Monte Carlo methods are fully applicable to SMT. O
the other hand, the high computational speed gained w
SMT ~2 orders of magnitude or more! allows for the solution
of problems where the usage of conventional MC method
not reasonable because of large computation times.

The main idea behind SMT to replace the continuo
particle motion with a sequence of mappings of particle fo
prints is definitely not new. For example, the motion of pa
ing particles in the ergodic field of a stellarator has be
modeled in this way in Ref. 2. In this reference, the Coulo
collisions have been modeled with random changes of ve
ity space variables correctly in a qualitative way. The idea
use numerically computed orbits for the construction
Poincare´ maps has been applied to model the regular mo
of run-away electrons in Refs. 3 and 4. However, in t
present approach, for the first time, the treatment of collis
processes and the usage of real drift orbits for the const
tion of Poincare´ maps are performed consistently for th
DKE. The formalism allowing for such a consistent trea
ment has been developed in Ref. 5.

In Sec. II A, a convenient formulation of the DKE i
tensor notation and of the set of equations governing
dynamics of drift particle motion is given. In Sec. II B, th
concept of the SMT is discussed. In the long-mean-free-p
regime, velocity space diffusion and inelastic proces
~right-hand side of the DKE! produce only small changes o
the distribution function within one ‘‘bounce’’ time and
therefore, stochastic orbits can be discretized with respe
one of the phase space variables. For this purpose, Poin´
cuts are introduced and the concept of a regular map for
orbits and of a stochastic map including all random pert
bations is discussed. In Appendix A, it is briefly outline
how to transform the DKE to an integral equation describ
the conservation of a pseudo-scalar particle flux density
Sec. II C, an appropriate Monte Carlo method to solve t
second kind Fredholm integral equation by averaging o
Markov chains is described.

In Sec. III A and Appendix B, the concept of local ma
netic coordinate systems6 is introduced. This concept allow
for a clear separation of slow cross-field transport from
fast parallel motion, and thus strongly reduces the prob
of numerical diffusion and pertinent memory requiremen
In Sec. III B, a small Larmor radius approximation for di
placements of the footprints on the Poincare´ cuts due to mag-
netic and electric drifts is introduced. These displaceme
can be presented in the form of a Taylor series up to sec
order in the Larmor radius expansion. The expansion coe
cients are three-dimensinal functions of the position on
cut and of the particle pitch. This keeps the memory requ
ment in a reasonable range. Moreover, the dependence o
radial electric field is of parametric type only. Therefor
iterations with varying electrostatic potential can be do
without recomputing the maps.

In Sec. III C, a simplified Coulomb collision operato
taking into account velocity space effects only is introduc
Again, the orbit integrated components of the diffusion te
Downloaded 11 Oct 2002 to 129.27.161.29. Redistribution subject to AI
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sor and of the drag force have to be stored in three dim
sions where the main effort is to reconstruct the depende
on the particle pitch. The dependence on the momen
modulus can be easily factorized.

In Appendix C, it is shown how the distribution functio
can be reconstructed in every spatial point of the configu
tion. In addition, formulas for various moments of the dist
bution function are presented.

In Sec. IV, the SMT is applied to the problem of com
puting neoclassical transport coefficients and to the ‘‘glob
problem of computing convective fluxes generated by sup
thermal particles in a stellarator.7–9 Two magnetic configura-
tions have been considered, the Wendelstein 7-AS~W7-AS!
stellarator10 and the quasi-helically symmetric stellarat
~QHS!.11 The first configuration has a rather complicated
pology of the minimum-B surfaces, whereas the second
is very sensitive to the accuracy of particle drift modelin
For both configurations, a real space representation of
magnetic field has been used. For QHS, the expansion
the associated Legendre functions12 has been applied.

II. GENERAL FORMALISM

A. Drift kinetic equation

The drift-kinetic equation for the particle distributio
function f (z) in tensor notation has the form

Vi
] f

]zi 5
1

J

]

]zi JS Di j
] f

]zj2Fi f D2n f 1Q. ~1!

The set of variablesz includes the guiding center coordinate
in some general curvilinear coordinate system,zi5xi with
i 51 . . . 3, themomentum space variables,z45upu, and, z5

5l5pi /upu, being the momentum modulus and pitch, r
spectively, and the time,z65t. Also, Vi is the velocity of the
guiding center motion in coordinate-momentum-time spa
~phase-time space!

Di j 5Di j ~z!5DC
i j 1DQL

i j ,

Fi5Fi~z!5FC
i 1FQL

i , ~2!

are the components of the diffusion tensor and of the frict
force, respectively, describing both the effects of Coulo
collisions and of quasi-linear diffusion due to rf-heating,n
5n(z) is the particle sink rate due to inelastic processesQ
5Q(z) is a particle source, andJ is the Jacobian of the
coordinates (z,f) with f being the gyro-phase

J5U]~r ,p,t !

]~z,f!
U5Ag

Bi* ~z!

B~x!
p2, ~3!

where13,14

Bi* ~z!5hiB* i , B* i5Bi1
c

e

pl

Ag
« i jk

]hk

]xj . ~4!

Here, e, c, Ag, Bi , and hi , are particle charge, speed o
light, metric determinant of spatial coordinate systemx, con-
travariant components of the magnetic field and covari
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp



ov
ry

e-
a
e
ti

he
d
th

t
c
l
e
a
os
a-
c

th

.
The

they
ol-
ors

nt

m

ame

f

t,

by
en
ut

ap,
the

al
rily a
m
., a
the

3510 Phys. Plasmas, Vol. 9, No. 8, August 2002 Kasilov et al.
components of the unit vector along the magnetic fieldh
5B/B, respectively, and« i jk is the completely anti-
symmetric unit tensor~Levi–Civita symbol!.

Introducing the relativistic factorg, cyclotron frequency
vc , parallel velocityv i and magnetic momentm

g5A11
p2

m0
2c2, vc5

eB

m0cg
,

v i5
lp

m0g
, m5

p2~12l2!

2m0B
, ~5!

wherem0 is the mass of a particle at rest, the system g
erning the dynamics of drift particle motion in stationa
electric and magnetic fields becomes

d

dt
xi5

d

dt
zi5Vi~z!5vg

i , i 51...3, ~6!

d

dt
p5

d

dt
z45V4~z!52em0

g

p
vg

i ]F

]xi , ~7!

d

dt
l5

d

dt
z55V5~z!

52
12l2

l S em0

g

p2 vg
i ]F

]xi 1
1

2
vg

i ] ln B

]xi D , ~8!

d

dt
t5

d

dt
z65V6~z!51, ~9!

with the contravariant guiding center velocityvg
i

vg
i 5

1

Bi*
S v iB* i1« i jk

cBj

BAg
S ]F

]xk 1
m

eg

]B

]xkD D . ~10!

Here,F is the electrostatic potential andv i as well asm are
to be expressed throughp andl using ~5!.

B. Stochastic mapping

Equation~1! describes both particle drift motion and v
locity space diffusion as a single continuous process of p
ticle motion along a stochastic orbit. In the long-mean-fre
path regime, the velocity space diffusion and inelas
processes described by the right-hand side of~1! produce
only a small change in the distribution function during t
‘‘bounce’’ time, which is defined as the time a particle nee
to cross the characteristic magnetic field scale during
drift motion described by the left-hand side of~1!. Due to
this fact, one can discretize stochastic orbits with respec
one of the phase space variables. For this purpose, Poin´
cuts are introduced. These Poincare´ cuts are five-dimensiona
hyper-surfaces in the six-dimensional phase-time spac
the variablesz. For such hyper-surfaces it is required th
each possible drift orbit intersects with at least one of th
Poincare´ cuts. Within the small Larmor radius approxim
tion, the most convenient choice for these cuts are surfa
where the magnetic field has a local minimum along
magnetic-field line
Downloaded 11 Oct 2002 to 129.27.161.29. Redistribution subject to AI
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h~r !•¹B~r !5hi~x!
]B~x!

]xi 50, ~11!

where h5B/B is the unit vector along the magnetic field
Usually, several such surfaces are present in a stellarator.
topology of these surfaces can be rather complex, and
have to be subdivided into a few regions with simpler top
ogy. A convenient numbering of these regions in stellarat
can be performed with the help of a two-dimensional~2D!
vector indexm5(n,m), where n numbers magnetic-field
periods andm numbers the cuts within a single period.

From the set of the phase space variablesz one can
separate one spatial variable, e.g.,x3, which is monotoni-
cally increasing along the magnetic-field line. A convenie
choice is the toroidal angle,x35w. The remaining set of five
variables is notated asu where

u15z15x1, u25z25x2, u35z45p,

u45z55l, u55z65t. ~12!

Equation ~11! imposes no restrictions on the momentu
space variablesu35p and u45l and on the time variable
u55t. With respect to these variables the cuts have the s
extent as the whole phase-time spacez. Together with the cut
index m, this set of variables,ui , describes the positions o
the footprints of the stochastic orbit on the Poincare´ cuts,
~m,u!. Without collisions, each new footprint of a drift orbi
(m8,u8), is determined by the Poincare´ map,

m85Mm~u!, u8 i5Um
i ~u!, ~13!

whereMm(u) gives the index of the next cut to be passed
the drift orbit. This can be one of two neighboring cuts, th
such particle is called ‘‘passing,’’ or it can be the same c
for a ‘‘trapped’’ particle. The mapping functionUm

i (u) gives
the coordinates on this next cut. This map is a regular m
because it is completely determined by the solution of
equations of particle drift motion~6!–~9! through Um

i (u)
5Zi(zm ,tbm) for i 51,2 andUm

i (u)5Zi 11(zm ,tbm) for i
53 . . . 5,where

]

]t
Zi~z,t!5Vi~Z~z,t!!, Zi~z,0!5zi . ~14!

The coordinates of the starting point,zm
i for iÞ3, are defined

by ~12! andzm
3 5xm

3 is given by the solution of~11! for fixed
x1 andx2

xm
3 2qm~u![Fm~zm!50, ~15!

where the starting point is on the cutm. So, Eq.~15! is the
same as~11! just resolved with respect tox3 andFm defines
the hyper-surface. Here, the full set of variablesu is used in
qm(u) rather thenx1 andx2 only, because in a more gener
case, the cut surface in coordinate space is not necessa
minimum-B surface but could be a function of momentu
space variables as well. This would be the case if, e.g
parallel electrostatic field would be present. In particular,
map over the time variable is rather simple,Um

5 (u)5u5

1tbm , wheretbm5tbm(u) is a ‘‘bounce’’ time, which is the
time needed for a particle transition from the cutm to the cut
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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m8. Thus, particle motion is discretized with respect to t
variablex3 which is replaced by the cut indexm.

Figure 1 shows the spatial location of the Poincare´ cuts
within a field period for a real space configuration of stell
ator W7-AS.10 One can see, e.g., that along a spec
magnetic-field line~vertical line!, there exist two Poincare´
cuts labeled with two specific values of the cut indexm. The
information about the transition between these cuts is c
tained in the discrete component of the Poincare´ map ~13!.
Starting from this point, a specific local magnetic coordin
system is used, such that the coordinatesx1 andx2 stay un-
changed along the magnetic field line. This kind of coor
nate system is discussed in Sec. III A. Figure 2 shows
number of cuts as a function ofx1 and x2. In this configu-
ration, the number of cuts is in the range of 1–4. The das
line at x15195 cm indicates the starting position for sca
overx2 of local minima and maxima reached alongx3 ~along
the magnetic field line!. They are presented in Fig. 3. He

FIG. 1. The geometry of minimum-B cuts in W7-AS.

FIG. 2. Number of cuts along the magnetic-field line within one magne
field period as function of local magnetic coordinatesx1 andx2 for W7-AS.
Downloaded 11 Oct 2002 to 129.27.161.29. Redistribution subject to AI
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again, the dashed line marks the field line where the modu
of B is presented as a function ofx3 in Fig. 4. Circles mark
local minima and squares mark local maxima.

The cuts have a nontrivial topology. This requires a s
cific organization of storage of orbit information. The topo
ogy of cuts in the quasi-helically-symmetric configuratio
QHS11 is less complicated~see Fig. 5! and is very close to
the topology of a straight stellarator. Note that there exis
region where the number of cuts~Fig. 6! locally is zero.
Through this region, passing orbits are mapped between
located in neighboring magnetic field periods. For details
Sec. III A.

In the presence of weak collisions and quasi-linear d
fusion characterized by time scalestc@tbm or tQL@tbm ,
respectively, the map has to include a small random per
bation of the particle coordinatesdum

i (u) which describes
the effect of these diffusive processes

FIG. 3. Location of local minima~solid! and local maxima~dashed! reached
alongx3 as a function ofx2.

FIG. 4. Modulus ofB vs x3 along the dotted field line in Fig. 3.
-
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m85Mm~u1dum~u!![M̃m~u!,

u8 i5Um
i ~u1dum~u!![Ũm

i ~u!. ~16!

Therefore, such a mapping becomes stochastic. The ran
perturbations entering the stochastic map~16! have been ob-
tained from the drift-kinetic equation in Ref. 5. Also in th
reference, the drift kinetic equation has been transforme
an integral equation describing the conservation of
pseudo-scalar particle flux densityGm through the Poincare´
cuts. Following the lines of Ref. 5~see Appendix A!, this
equation can be written in the following form:

Gm8~u8!5(
m

E d5u^dm8,M̃m(u)d~u82Ũm~u!!&

3~12 n̄m~u!!~Gm~u!1Qm~u!!. ~17!

HereGm5dN/2pd5u5Jmf , where dN is the number of par-
ticles passing through the element of the cut a
du1du2du3du45dx1dx2dp dl in coordinate and in momen
tum space during the time dt5du5 due to their drift motion.
This quantity is proportional to the distribution functionf

FIG. 5. The geometry of minimum-B cuts in QHS.

FIG. 6. The same as Fig. 2 for QHS.
Downloaded 11 Oct 2002 to 129.27.161.29. Redistribution subject to AI
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where the JacobianJm is expressed through the normal com
ponent of the six-dimensional velocity~6!–~9! with respect
to the Poincare´ cut

Jm~u!5
Vi~zm!dSi

du1
¯du5 5J~z!Vi~z!

]Fm~z!

]zi U
z5zm

, ~18!

where dSi is the element of the hyper-surface. The expli
expression forJm is given in Appendix B. The other quanti
ties in ~17!

n̄m~u!5E
0

tbm
dt n~Z~zm ,t!!,

Qm~u!5JmQ̄m~u!, ~19!

Q̄m~u!5E
0

tbm
dt Q~Z~zm ,t!!,

are the orbit integrated sink rate (n̄m!1) and the orbit inte-
grated source, respectively, andd(u2Ũm)5d(u1

2Ũm
1 )¯d(u52Ũm

5 ). Angular bracketŝ¯& denote the av-
erage over random perturbationsdui which satisfy

^dui&5Fm
i 8 , ^duiduj&52D̄m

i 8 j 8 , ~20!

where i 85 i and j 85 j for i , j <2 and i 85 i 11 and j 85 j
11 for i , j .2. Note that in the long-mean-free-path regim
the higher order moments of the random perturbationsdui

produce higher order corrections to the approximate equa
~17! over the small parametertbm /tc , and, therefore, are no
important. This leaves a significant freedom in the definiti
of dui . A particular form ofdui convenient for Monte Carlo
modeling is

dui5&am
i j j j1Fm

i , ~21!

where the matrixam
i j satisfies

am
ikam

j l dkl5D̄m
i j , ~22!

and j i is the set of independent standard random numb
satisfying the relations

^j i&50, ^j ij j&5d i j , ~23!

whered i j is the Kronecker symbol. The orbit integrated d
fusion operator coefficients in~20! are given by

Fm
i 5F̄m

i 1
1

Jm

]

]uj JmD̄m
i j , ~24!

F̄m
i 5E

0

tbm
dt c̄k

i ~t!Fk~Z~zm ,t!!,

D̄m
i j 5E

0

tbm
dt c̄k

i ~t!c̄l
j~t!Dkl~Z~zm ,t!!, ~25!

wherec̄k
i is the transformation matrix from the local coord

nates on the trajectory,Z(zm ,t), to Lagrangian coordinate
zL ~coordinates of the trajectory starting point on the Po
carécut u and trajectory parametert ; see Appendix A!. This
matrix satisfies the equation set
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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]

]t
c̄k

i ~t!52 c̄l
i~t!

]Vl~z8!

]z8k U
z85Z(zm ,t)

, ~26!

and the initial conditions on the cut~equation fori 53 is not
used!

c̄k
i ~0!5dk

i 2Vi~z!
]Fm~z!

]zk S Vj~z!
]Fm~z!

]zj D 21U
z5zm

,

iÞ3. ~27!

The solution of~17! is required mainly for the computatio
of various phase space–time integrals of the distribut
function which take the form5

E dtE d3pE d3rA~r ,p,t ! f ~r ,p,t !

52pE d6zA~z!52p(
m

E d5uGm~u!Ām~u!. ~28!

This form of integrals is a straightforward result of th
change of integration variablesz to Lagrangian variableszL

introduced in Appendix A. IfA is a function of gyro-phasef,
gyro-averaging is also implied in the expression forĀm(u)

Ām~u!5
1

2p E
0

tbm
dtE

2p

p

dfA~Z~zm ,t!,f!. ~29!

Practically, it is not necessary to use the exact orbit in~29! in
the majority of cases. It is sufficient to replaceZ(zm ,t) with
a simplified orbit containing only the parallel motion. I
more details, the assumptions used for the computatio
averages are described in Appendix C.

C. Monte Carlo algorithm

The integral equation~17! is of the type of a second kind
Fredholm integral equation which can be solved with a st
dard Monte Carlo method. For this purpose the equatio
written in the following operator form:

Gm~u!5K̂~Gm~u!1Qm~u!!, ~30!

whereK̂ denotes the integral-sum operation

K̂Am8~u8![(
m

E d5uKm8,m~u8,u!Am~u!, ~31!

Km8,m~u8,u!5Mm8,m~u8,u!~12 n̄m~u!!, ~32!

Mm8,m~u8,u!5^dm8,M̃m(u)d~u82Ũm~u!!&. ~33!

The formal solution to~30! is given through the series

Gm~u!5 (
k51

`

K̂kQm~u!. ~34!

In order to construct the statistical estimate of the soluti
one introduces test particles characterized by their posi
~m, u! and by their statistical weightw. Then, a Markov
chain is the sequence of particle positions and weights~mk ,
uk , wk! wherek50,1,2 . . . . Each new position and weigh
~mk11 , uk11 , wk11! are determined from the previous on
Downloaded 11 Oct 2002 to 129.27.161.29. Redistribution subject to AI
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by the stochastic map~16! with (m,u)5(mk ,uk) and
(mk11 ,uk11)5(m8,u8) @function ~33! is the probability dis-
tribution function for this transition# and by sampling the
weight

wk115Wm~uk ,wk!,

^Wm~uk ,wk!&5~12 n̄m~u!!wk . ~35!

This is realized by puttingwk11 to wk with the probability
(12 n̄m(u)) and putting it to zero otherwise. In the secon
case, the Markov chain is terminated. Presenting the so
Qm(u) as

Qm~u!5w0Pm
(Q)~u!, Pm

(Q)~u!.0,

(
m

E d5uPm
(Q)~u!51, ~36!

where the initial weight w0 with uw0u5const satisfies
sign(w0)5sign(Qm(u)) the initial point of the Markov chain
~m0 , u0! is chosen randomly so that

^dm,m0
d~u2u0!&5Pm

(Q)~u!, ~37!

e.g., the rejection technique~see, e.g., Ref. 15! can be used
for this purpose. Thus, the formal solution~34! is given by
an average over Markov chains

Gm~u!5K (
k51

`

wkdm,mk
d~u2uk!L . ~38!

Practically, instead ofGm(u) various phase–time space int
grals of this quantity are computed within the Monte Ca
procedure

2p•(
m

E d5uGm~u!Ām~u!52pK (
k51

`

wkĀmk
~uk!L .

~39!

In particular, the flux densityGm8(u8) is also approximated
by such an integral withĀm(u)51/(Du1

¯Du5) for m
5m8, u8 i2Dui /2,ui,u8 i1Dui /2 and Ām(u)50 other-
wise.

Note that the Monte Carlo procedure described ab
contains as a particular case the conventional MC proced1

if instead of the minimum-B cuts one uses the cutst5tm

[t01mDt whereDt is the time integration step of the equ
tion of drift particle motion andm51,2,3, . . . is the numbe
of the integration step. In this case the regular mapUm

i (u) is
obtained using a step integration method~e.g., Runge–Kutta!
instead of using the interpolation of the stored map as i
done in the present paper.

III. MAPPING IN STELLARATOR GEOMETRY

A. Local magnetic coordinate systems

In a general magnetic field topology, the particle moti
can conveniently be described using a set of local magn
coordinatesx instead of a unique coordinate system for t
whole plasma volume. For such coordinates, the requirem
is that two of these coordinates satisfy the magnetic diff
ential equation
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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h•¹xi50, i 51,2. ~40!

In such coordinate systems the fast parallel motion leaves
coordinatesx1 andx2 unchanged while the small cross-fie
particle displacements due to the drift during the ‘‘bounc
period are directly given by increments of these coordina
Dx1 and Dx2. Therefore, relatively large relative errors
Dx1 and Dx2 do not introduce significant numerical cros
field transport. This is a positive feature which is not eas
realized in real-space coordinates. Therefore, such a co
nate system allows to reduce the computer memory ne
sary for the storage of particle orbit data which in turn
needed for the orbit reconstruction.

In a general magnetic field, two families of linearly in
dependent single-valued solutions to the magnetic differ
tial equation~40! do not exist unless the magnetic-field lin
are closed~closed at infinity, in particular!. In a special case
with existing magnetic surfaces,~40! has only one family of
such solutions. These are surfaces of constant magnetic
a quantity which is used as one of the coordinates in a
coordinate system. Therefore, in order to use the solution
the magnetic differential equation~40! as coordinates in the
general case, it is necessary to introduce a surface which
the magnetic-field lines. This cut is called ‘‘reference cu
and serves as a periodic boundary separating the reg
where the functionsx1 andx2 are single valued. For toroida
magnetic field configurations, this can be a toroidal cutw
5const, wherew is the azimuth~toroidal angle! of the cylin-
drical coordinate system (R,Z,w), andR and Z are the ra-
dius counted from the main axis of the torus and the dista
along the main axis of the torus, respectively. For stella
tors, it is more convenient to introduce several refere
cuts,

w5wn , wn5
2pn

N
,

n50, . . . ,N21, ~41!

whereN is the number of toroidal stellarator magnetic fie
periods. In this wayN local magnetic coordinate system
~LMCS!, each associated with its own cut, are introduc
Since the domains of coordinate systems,wn,w,wn12p,
overlap, the particle position can be uniquely described i
few coordinate systems simultaneously~Multiple Coordinate
System Approach6! by the cut index,n, and the set of loca
magnetic coordinates~x1, x2, x3! associated with this cut
The parallel variable is given as

x3[w2wn , ~42!

and the local magnetic coordinatesx1 and x2 are defined,
respectively, as cylindrical coordinatesR8 andZ8 of the pro-
jection along the field line of the particle position (R,Z,w) to
the reference cutw5wn . Formally, this is done with help o
the characteristics of the magnetic differential equation~40!,
functionsX1(R,Z,w;w8) andX2(R,Z,w;w8), as follows:

xi[Xi~R,Z,w;wn!, i 51,2. ~43!

FunctionsX1 andX2 satisfy the magnetic-field line equation
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]X1

]w8
5

hR~X1,X2,w8!

hw~X1,X2,w8!
,

]X1

]w8
5

hZ~X1,X2,w8!

hw~X1,X2,w8!
, ~44!

and the initial conditions

X1~R,Z,w;w!5R, X2~R,Z,w;w!5Z. ~45!

HerehR(R,Z,w), hw(R,Z,w) andhZ(R,Z,w) are the contra-
variant components ofh in the cylindrical coordinate system
Equation~40! can be checked using the group property
characteristics,

Xi~X1~R,Z,w;w9!,X2~R,Z,w;w9!,w9;w8!

5Xi~R,Z,w;w8!. ~46!

Taking the derivative of~46! with respect tow9 and putting
w95w and w85wn in the final expression with the help o
~45! and ~43!, one obtains~40!.

Multiple local coordinate systems permit to exploit th
advantage of the Monte Carlo method to model particle m
tion in the most convenient coordinate system. The final
sition of a particle, which is needed for statistical accounti
is obtained by a~set of! coordinate transforms. For the pu
pose of statistical accounting, the ‘‘preferred’’ coordina
system domains are introduced as follows,wn,w,wn11 .
The link between the neighboring LMCS is obtained with t
help of ~46!

x(n61)
i [Xi~R,Z,w;wn61!5Xi~x(n)

1 ,x(n)
2 ,wn ;wn61!,

i 51,2; x(n61)
3 5x(n)

3 7
2p

N
. ~47!

Here the subscript (n) has been introduced in order to di
tinguish between different LMCS. If stellarator symmet
exists and all magnetic-field periods are equivalent, suc
variable change can be described by two sets of function

x(n61)
i 5X6

i ~x(n)
1 ,x(n)

2 !, ~48!

where

X6
i ~x1,x2![Xi S x1,x2,0;6

2p

N D , ~49!

defines the magnetic-field map in positive (1) and negative
(2) directions, respectively. If stellarator symmetry is d
stroyed, the sets of mapping functions have to be defined
each period separately.

Since in local magnetic coordinates the slow cross-fi
motion is clearly separated from the fast parallel motion,
only source of cross-field numerical diffusion can arise fro
a coordinate change. Therefore, the mapping functions~49!
are reconstructed numerically with high accuracy using
fine mesh of data points and bi-cubic splines for interpo
tion. Since these functions are two-dimensional, the requ
ment for computer memory stays within reasonable limits

It should be mentioned that multiple LMCS place n
restrictions on the topology of the magnetic field, thus allo
ing the treatment of island structures and ergodic magn
field layers as well as regular magnetic surfaces.6 At the
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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same time, for configurations with embedded magnetic
faces only, where Boozer coordinates~c,u,w! can be estab-
lished, the definition of LMCS is trivial

x15c, x25u2i~w2wn!,

x35w2wn . ~50!

Herei5i(c) is the rotational transform angle in units of 2p,
c is a flux label andu is a poloidal angle. The magnetic-fiel
map ~49! is also simplified,

X6
1 ~x1,x2![x1,

X6
2 ~x1,x2![x26i~x1!

2p

N
. ~51!

With the help of multiple local magnetic coordinate sy
tems, the numbering of minimum-B cuts is performed w
two indices, (n,m)[m, wheren is the index of the ‘‘pre-
ferred’’ domain of LMCS~magnetic-field period! and m is
the index of the minimum-B surface region within this p
riod. For unambiguous indexing, these surfaces are split
regions in such a way that no magnetic-field line interse
such a surface twice within a magnetic-field period. To e
sure this, the same minimum-B surface has, if necessar
be split into a few regions within the field period. It is als
split into different ‘‘cuts’’ by the reference cut if the give
surface extends through the chosen boundary of the mag
field period.

B. Poincaré mapping in small Larmor radius
approximation

The unperturbed mapUm
i (u) can be constructed now i

LMCS containing the starting point within its preferred d
main. If the end point belongs to the same preferred dom
the spatial components of the Poincare´ map~13! can be writ-
ten as

Um
1,2~u!5u1,21Dxm

1,2~u!, ~52!

whereDxm
1,2 are displacements of the footprint. As it will b

seen below, these displacements which describe the effec
the magnetic and electric drift can be expanded in a se
over the Larmor radius. If the end point belongs to the ‘‘p
ferred domain’’ of a different LMCS, coordinates~52! must
be transformed using the magnetic-field mapping~48! or a
series of such transforms if a particle travels through m
than one magnetic-field period during its bounce time.

The momentum space components of the Poincare´ map,
Um

3 (u) and Um
4 (u), can be obtained using the conservati

of the magnetic moment~5! and of the total energyw
5m0c2g1eF.

In the following it is assumed that the electrostatic p
tential F is constant along the magnetic field,F5F(c)
wherec5c(x1,x2) is the flux surface label, and that ene
gies of particles are nonrelativistic,p2!m0

2c2. In this case,
one can introduce three scaling parameters forDxi and
presentDxi in the form of the expansion over these para
eters. First, the normalized timet, the dimensionless mo
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mentump̂, the dimensionless magnetic fieldB̂, and the di-
mensionless electrostatic potentialF̂ are introduced
according to

t5
p0t

m0
, p̂5

p

p0
,

B̂5
B

B0
, F̂5

eF

T
, ~53!

respectively, wherep0 is the starting value of particle mo
mentum, B0 is a reference magnetic field, andT is the
plasma temperature. HereF̂;1 is assumed. Introducing als
the normalized magnetic and electric drift velocitiesv̂B

i and
v̂E

i according to

v̂B
i [

p̂2

2B̂Ag
F2l2~« i jk2hihl«

l jk !
]hk

]xj

1~12l2!« i jkhj

] log B̂

]xk G , ~54!

v̂E
i [

p̂2

2B̂Ag
« i jkhj

]c

]xk
, ~55!

respectively, the equations of motion~6!–~8! are transformed
to

dxi

dt
5rBv̂B

i 1aEv̂E
i , i 51,2, ~56!

dx3

dt
5 p̂lh3, ~57!

dp̂

dt
52

aE

2p̂
v̂B

i ]c

]xi , ~58!

dl

dt
5

12l2

l
S 1

p̂

dp̂

dt
2

1

2
v̂B

i ] log B̂

]xi D , ~59!

where

aE5
r0

p̄0

dF

dc
'rE1rEE~c2c0!. ~60!

Here

rB5r0 p̄0 , rE5
r0

p̄0

dF̂~c0!

dc0
,

rEE5
r0

p̄0

d2F̂~c0!

dc0
2 , ~61!

p̄05
p0

A2m0T
, r05

1

vc0
A2T

m0
,

vc05
eB0

m0c
, ~62!

andc0 is a starting value of the flux surface label. The s
lution to ~56!–~59! is obtained using starting conditionsp̂
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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51 andc5c0 . Defining the normalized bounce time whic
is independent fromp0 in the zero-order Larmor radius ex
pansion ast̂bm5tbmp0 /m0 , the displacementsDxi are ob-
tained as

Dxm
i [xi u t̂5 t̂bm

2xi u t̂50 . ~63!

Since all three parameters~61! are proportional to the Lar
mor radiusr0 , the displacements are presented in the fo
of a Taylor series up to second order terms inr0

Dxm
i 5S ]Dxm

i

]rE
D

0

rE1S ]Dxm
i

]rB
D

0

rB

1S ]2Dxm
i

]rB ]rEE
D

0

rB rEE1
1

2 S ]2Dxm
i

]rB
2 D

0

rB
2

1S ]2Dxm
i

]rB ]rE
D

0

rB rE1
1

2 S ]2Dxm
i

]rE
2 D

0

rE
2 , ~64!

where (̄ )0 denotes that the value forrB5rE5rEE50.
Here, only nonzero terms are listed. The expansion co
cients are three-dimensional~3D! functions ofx1, x2 andl.
Thus, usage of the local magnetic coordinates reduces
amount of necessary storage to amounts reasonable on
ern workstations. Moreover, since the radial electric fi
profile enters only through the parametersrE andrEE , Eq.
~64! allows for iterations with a varying electrostatic pote
tial during an MC run without any need for reloading th
maps. Note that one needs the knowledge of the flux labc
only for the description of the effects of the radial elect
field. If these effects are small, the assumption of existe
of embedded magnetic surfaces is not necessary.

The dependence of the bounce timetbm on the particle
pitch l is shown in Fig. 7 for a specific minimum denote
with C in Fig. 4. One can see the rather ‘‘rich’’ behavio
including logarithmic singularities located at the two neig

FIG. 7. ‘‘Bounce’’-timetbm vs particle pitchl for the minimumC in Fig. 6.
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boring maxima—A andD—and at the saddle-point marke
with B. This behavior has to be handled by subdividing t
interpolation range.

It should be mentioned that for small Larmor radii, th
mapping procedure is equivalent to tracing the contours
the parallel adiabatic invariant5 with deterministic transitions
between different classes of trapped particles. In this
proximation a re-scaling of the Larmor radius is allow
without consequences for the shape of the orbits. Actua
within the mapping procedure the Larmor radius and co
sion terms can be scaled with the same factor. This is d
onstrated in Sec. IV D. Thus, even high energy ions or a v
strong radial electric field can be treated by this approach
long as one assumes conservation of the parallel adiab
invariant. As it is known, the transition between classes
particles are not deterministic as soon as one assumes
gyro-phase to be random before the transition. Neverthel
in the present application to electrons, the presence of C
lomb collisions introduces an even higher uncertainty th
collision-less transition probabilities. Therefore, the usage
deterministic transitions is fully justified.

The 3D interpolation of the coefficients in~64! is per-
formed with quadratic polynomial interpolation on the equ
distant grid in the coordinate space (x1,x2) and with a non-
equidistant grid over the particle pitchl. This grid is fitted to
the behavior of the bounce time.

The reconstruction of particle displacementsDxm
i with

the help of the Taylor series~64! is shown in Figs. 8 and 9
for W7-AS without and with a radial electric field, respe
tively. Here, the reference magnetic fieldB0525 kG, the
particle kinetic energywk58 keV, and the radial electric
field Er5393 V/cm. The grid size in coordinate space is 1
times 120. The reconstruction of the pitch angle depende
is performed with 60 grid points in the trapped region a
with 20 grid points in the passing region. This allows to ke
the interpolation error below 1%. One can again see
strong influence of neighboring maxima and saddle-poin
In the case with a radial electric field, one can also see
the displacement reflects the behavior of the bounce tim

FIG. 8. Displacement of particles,Dxm
i , vs particle pitchl without radial

electric field.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Fig. 7 very well since the electric drift velocity does n
depend on particle pitch.

In Fig. 10, the variance~20! of l, ^dl2&, after one
bounce time is presented as function ofl. The exact form of
the collision integral is discussed in Sec. III C. It has to
mentioned that only derivatives of this quantity show a s
gular behavior.

C. Coulomb collisions

In the present realization of the code, the effect of Co
lomb collisions is taken into account in velocity space on
and the spatial components ofD̄m

i j andF m
i are neglected in

the stochastic map. Therefore, only the strongest par
transport effects stemming from the magnetic-field asymm
try are correctly described. Assuming the scattering ba
ground plasma to be an isotropic Maxwellian, the local fo
of the collision integral is

FIG. 9. Displacement of particles,Dxm
i , vs particle pitchl with radial

electric field.

FIG. 10. Variance ofl, ^dl2&, versusl after one ‘‘bounce’’ time. The ratio
between connection length and mean-free-path is 1024.
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St~ f !5
1

p2

]

]p
p2DC

pp~p!S ] f

]p
1

p f

m0TD
1DC

xx~p!
]

]l
~12l2!

] f

]l
. ~65!

Then, in zero-order approximation over the Larmor radi
there exist only three nonzero components of the or
integrated diffusion coefficients~25!

D̄Cm
pp ~u!5

m0

p
DC

pp~p!t̂bm~x1,x2,l!, ~66!

D̄Cm
ll ~u!5

m0

p
DC

xx~p!Lm~x1,x2,l!, ~67!

F̄Cm
p ~u!52

p

m0T
D̄Cm

pp , ~68!

where

Lm~x1,x2,l!5
~12l2!2

l2 E
0

tbm dt̂l82

12l82 ~69!

does not depend onp. Here l and l8 denote the starting
value on the cut and the value on the trajectory, respectiv
SinceDC

pp andDC
ll do not depend onl and their dependenc

on x1 and x2 originates from dependencies on the bac
ground particle densityn and on the temperatureT, the nec-
essary storage is three-dimensional.~The explicit form of
these coefficients can be found, e.g., in Ref. 16.! This is true
also for the components of the deviation~24!. Thus, the stor-
age requirement for the ‘‘stochastic’’ parameters of the m
is also reduced to 3D, because complex dependencies o
viation and variance on the momentum modulus can be
torized.

In the following, for the computation of the mono
energetic transport coefficients, the collision operator is f
ther simplified by puttingDC

pp50 andDC
xx5n'/2 with n'

directly prescribed.

IV. APPLICATIONS AND BENCHMARKING

A. Collisionless orbits

In Fig. 11 the footprints of a trapped particle orbit o
minimum-B cuts together with Poincare´ plots of the mag-
netic field are shown. It should be mentioned that a part
orbit in general leaves many footprints on Poincare` cuts dur-
ing a complete revolution in the trapping region~trapped
particle! or over the poloidal angle~passing particle!—
bounce period in the usual sense. One can observe this
‘‘splitting’’ of the orbit in Fig. 11. With a radial electric field
~see Fig. 12!, trapped orbits are closed, as expected. One
also see in both figures that the shapes of orbits obta
from mapping and obtained from direct orbit tracing a
practically the same. On the other hand, from the evolut
of the pitch angle with time shown in Figs. 13 and 14 it
seen that the orbits are different. They coincide with ea
other for a limited time only. The reason for this is that t
given orbit belongs to a particle going through a few tran
tions between different trapping states. First it starts wit
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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‘‘toroidal banana orbit’’ crossing 7 minima during a comple
bounce period, then it becomes blocked within three mini
and drifts out of the system. This is better seen from Fig.
where the time evolution of the flux label is shown. Su
kind of orbits are unstable in the sense that the momen
transition can be strongly influenced even by small erro
On the other hand, these errors are anyway well below
stochastic modifactions of orbits by Coulomb collisions.

Some orbits of trapped particles in QHS are shown
Fig. 16. Due to quasi-helical symmetry, the poloidal dr
velocity in this device is much higher than the radial dr
velocity. Therefore, almost all these orbits are super-bana
which can be very fat and sometimes those orbits are
closed within the confinement region. The thickness of th
orbits is shown in Fig. 17 as function of the particle pitc
The two peaks in this plot correspond to particles with ma

FIG. 11. Footprints of a trapped particle orbit on minimum-B cuts toget
with Poincare´ plots of the magnetic field. The starting values arel50.2 and
wk58 keV at the positionx15206 cm,x250.01 cm without a radial elec-
tric field. Comparison between direct computation~dots! and mapping pro-
cedure~1!.

FIG. 12. Same as Fig. 11 with the presence of a radial electric fieldEr

5393 V/cm.
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mum deviation towards the center and towards the
closed magnetic surface, respectively. With the help of
mapping technique, the computation of collision less orbit
sufficiently fast to scan the whole phase space volume for
presence of a loss cone. This could be of interest
a-particle confinement studies.

B. Calculation of Green’s functions

In various applications of solvers for the DKE, the pro
lem can be reduced to the computation of Green’s functi
of various types. Such applications are, e.g., the computa
of neoclassical transport coefficients,1 the computation of
quasi-stationary nonlocal~convective! fluxes and of power
re-deposition profiles of supra-thermal particles generated
radiofrequency heating.7–9 This results in two types of prob
lems, initial value problems and stationary problems.
definition, these Green’s functionsG(z0 ,z) satisfy the drift-
kinetic equation~1! with d-function source terms specified a

rFIG. 13. Time evolution of particle pitchl for a trapped particle with
starting values as given in Fig. 11 without a radial electric field. Compari
between direct computation~dots! and mapping procedure~1!.

FIG. 14. Same as Fig. 13 with the presence of a radial electric fieldEr

5393 V/cm.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp



ec
o-

es
o

e
of

m

is
-

on-

c

test
and
e
ith

i-

or-

g

ng
Fig.

3519Phys. Plasmas, Vol. 9, No. 8, August 2002 Mapping technique for stellarators
Qinit~z!5
1

2pJ~z!
d~z2z0!, ~70!

Qstat~z!5
nstat

2pJ~z!
d~z12z0

1!¯d~z52z0
5!, ~71!

for an initial value problem and a stationary problem, resp
tively, wherenstat is a constant source rate. In addition, h
mogeneous boundary conditions of various types have to
met.

Assuming that there exists no flux of incoming particl
through the outer boundary of the plasma, one boundary c
dition is

Vi~z!G~z0 ,z!
]Fbou~z!

]zi U
Fbou(z)50

50

for Vi~z!
]Fbou~z!

]zi ,0, ~72!

FIG. 15. Time evolution of flux labelc without electric field.

FIG. 16. Footprints of orbits in QHS with starting point positionx1

510.217 andx2520.28 and Larmor radiusr050.001.
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where Fbou(z)50 is the equation for a boundary surfac
such that¹Fbou is the normal to this surface. In the case
embedded magnetic surfaces,Fbou5c2cb wherecb is the
flux label of the boundary magnetic surface.

In momentum space, boundary conditions follow fro
the absence of a particle flux through the boundariesFp(z)
50. Namely, the physical domain in momentum space
limited by Fp(z)5z4(12(z5)2), and the appropriate bound
ary condition is given as

S Di j
]G

]zj 2~Vi1Fi !GD ]Fp~z!

]zi U
Fp(z)50

50. ~73!

In addition, G is limited at infinity, limz4→`G50. For the
computation of convective losses, additional boundary c
dition may be required in the thermal region

G~z0 ,z!uFT(z)5050, ~74!

whereFT(z)5z42pT , andpT5(2m0T)1/2.
All boundary conditions formally result in a specifi

modification of the kernel in the integral equation~17!. Con-
ditions ~72! and ~74! provide the additional factors
Q(Fbou(zm8(u8))) and Q(Fp(zm8(u8))), respectively,
whereQ(x) is a Heaviside step function.

The consequence for Monte Carlo operators is that
particles which cross the respective boundary are deleted
that the Markov chain is terminated. In addition, for tim
depending problems, the termination of Markov chains w
time @additional factorQ(te2z51z0

5) in the kernel# is intro-
duced wherete is the the evolution time. Boundary cond
tions in momentum space~73! can be realized in Monte
Carlo operators, e.g., by reflecting test particles from the c
responding boundary.

Integration ofd-functions along unperturbed orbits usin
~A3! gives

FIG. 17. Maximum particle deviation over the flux label from the starti
magnetic surface vs particle pitch for QHS. Same starting values as in
16.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Jm~u!E
0

tbm
dt

1

J~Z~zm~u!,t!!

3d~Z1~zm~u!,t!2z0
1!¯d~Z5~zm~u!,t!2z0

5!

5Jm~u!E
0

tbm
dt

1

J~Z!

]~zL!

]~Z!

3d~u12u0
1~z0!!¯d~u42u0

4~z0!!d~t2t0~z0!!

5d~u12u0
1~z0!!¯d~u42u0

4~z0!!. ~75!

The Lagrangian variableszL are defined in Appendix A, and
u0

i and t0 are the solutions of the equation setZi(zm(u),t)
5z0

i , i 51, . . . ,5, which gives the projection of the sour
point z0 onto the Poincare´ cut along the orbit. Thus, the orb
integrated sources~19!, Qm , are obtained from~70! and~71!
as

Qm
init~u!5

1

2p
d~u2u0!,

Qm
stat~u!5

nstat

2p
d~u12u0

1!¯d~u42u0
4!, ~76!

respectively. This kind of source have an intuitively obvio
realization in the Monte Carlo algorithm, resulting in the fa
that Markov chains are started in the projection point
Poincare´ cuts. For an initial value problem, the starting tim
of evolution,u5, is t0 and the test particle weight is (2p)21.
For a stationary problem, the starting weight is (2p)21nstat

and the time variableu5 is ignored.

C. Transport coefficients

For computation of transport coefficients, an initial val
problem corresponding to the source~70! at the initial time
momentz0

650 is considered. Here, the Green’s functionG
itself is not of interest, but a moment of this function, name
the variance of the flux label,̂(c2c0)2& rp[2p*d5z(c(z)
2c0)2G(z0 ,z), wherec05c(z0), is calculated as function
of the evolution timete5z6. The perpendicular diffusion co
efficient is estimated as1 D'5^(c2c0)2& rp /(2te). Substi-
tuting A(z)5(c(z)2c0)2d(z62te) in ~28! and ignoring the
change inc(z) during a single bounce time, one obtains

^~c2c0!2& rp52p(
m

E d5uGm~u!~c~zm~u!!2c0!2

3E
0

tm(u)

dtd~t1u52te!

5 (
k51

`

^~c~zmk
~uk!!2c0!2Q~u52te!

3Q~ te1tbmk
~uk!2u5!&. ~77!

Here, Eq.~39! has been used to present the variance of
flux label in the form of a statistical average over Mark
chains, ~mk , uk , wk!, where test particle weights,wk

5(2p)21, stay constant in absence of sinks in phase sp
n050. Thus, within the Monte Carlo algorithm, the contr
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bution of a given test particle to the value of (c2c0)2 is
computed when the time variableu5 exceedste .

In the following, the flux labelc is defined as the value
of the big radiusR of the flux surface point on the outer sid
of torus withZ50 in the symmetric cross-sectionw50. The
magnetic axis position is given byc5R0 .

The stochastic mapping technique has been ben
marked against the conventional MC method in regimes w
and without radial electric field and against the field-li
integration method17 for evaluating transport coefficients i
the 1/n regime. For both MC procedures, a simplified Lo
entz collision operator describing only pitch-angle scatter
has been used. The long-mean-free-path regime has
considered withLc / l 50.003 whereLc52pR0 /i and l
5v/n' are the connection length and the mean-free pa
respectively. Heren' is the perpendicular scattering fre
quency. The computed diffusion coefficient has been norm
ized to the mono-energetic plateau diffusion coefficie
D'

plateau5prL
2v/(16iR0), whererL5v/vc is the gyro-radius.

The radial electric field profile was chosen to keep the el
tric rotation frequencyvE5c(dF/dr )/(rB) close to a con-
stant along the small radiusr[c2R0 . Results for the nor-
malized diffusion coefficient as function of a normalize
evolution timete /tC are shown in Fig. 18 for the W7-AS
case. The difference between the results of direct MC
stochastic mapping is mainly due to the statistical error
direct MC. The number of test particles was 104 and 105,
respectively.

For benchmarking with the field line integration tec
nique the ‘‘effective ripple amplitude’’eeff

3/2 has been calcu-
lated as

eeff
3/25

9pn'D'R0
2

A8v2rL
2 ^u¹cu&M .S.

22 , ~78!

whereD' was evaluated for the 1/n-regime~zero radial elec-
tric field!. Here^¯&M .S. is an average over the volume b
tween two close magnetic surfaces. For an arbitrary ste

FIG. 18. Normalized diffusion coefficientD' /D'
plateauvs time in units oftC

for different values of normalized rotation frequency~W7-AS!. Results from
mapping~solid! and direct MC~dashed!.
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ator, eeff is substituted for the helical ripple amplitudeeh in
formulas for 1/n transport coefficients for the standard st
larator. In Fig. 19 the effective ripple amplitudeeeff

3/2 is plot-
ted versus the major radius for W7-AS whereas the result
QHS is given in Fig. 20. The results from the mapping a
proach and from the field line integration stay in good agr
ment. It should be mentioned here that for QHS the com
tation of 1/n losses with MC procedures is rather delica
since, on one hand, very low-collision frequencies have to
chosen in order to avoid symmetric losses and, on the o
hand, it has to be ensured that the interpolation procedure
the SMT code do not destroy the quasi-helical symmetry

D. Stationary Green’s functions

In order to separate the problem of finding the distrib
tion function of supra-thermal electrons generated by loc
ized electron cyclotron resonance heating~ECRH! from the
problem of computing the particle and energy balan

FIG. 19. Effective ripple amplitudeeeff
3/2 vs major radiusx1 ~W7-AS!. Re-

sults from mapping~solid! and from field line integration~dashed! are
given.

FIG. 20. Effective ripple amplitudeeeff
3/2 vs major radiusx1 ~QHS!. Results

from mapping~solid! and from field line integration~dashed! are given.
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linear8 or nonlinear18 d f methods are used in the kinet
modeling. Within these methods, the electron distribut
function f is formally split into two parts,f 5 f 01d f , where
f 0 is the unperturbed distribution function of bulk electro
and d f is the non-Maxwellian part of special interest. Th
kinetic equation is presented in a symbolic form

Vi
] f

]zi 5L̂Cf 1L̂RFf , ~79!

whereL̂C is the Coulomb collision operator describing co
lisions with background ions and with electrons, andL̂RF is
an operator describing the wave–particle interaction. In c
of small enough wave amplitudes, this operator is given
quasi-linear theory.19 Using the separation off into f 0 and
d f in ~79!, the equation ford f is given as

Vi
]d f

]zi 2L̂Cd f 2L̂RFd f 1neffd f 5L̂RFf 0 , ~80!

where neff is some effective exchange frequency which
taken to be small in the supra-thermal range of energies

If the total amount of supra-thermal electrons is sma
the kinetic equation forf 0 together with the assumption of
local Maxwellian distribution function leads to a set of on
dimensional neoclassical transport equations, which con
additional magnetic surface averaged source terms of
ticles Qn and energyQw

Qn5 K E d3pneffd f L
M .S.

52
1

S

]Gn'

]c
,

Qw5 K E d3pwk~ L̂Cd f 1neffd f !L
M .S.

5 K E d3pwkL̂Cd f L
M .S.

2
1

S

]Gw'

]c
. ~81!

Herewk5m0c2(g21), S, Gn' andGw' are the kinetic en-
ergy, magnetic surface area, total fluxes of supra-thermal
ticles and energy, respectively. Without the quasi-linear
erator on the left-hand side of~80!, this procedure reduces t
the linear Green’s function approach given in Refs. 9 and
This approach is valid ifd f ! f 0 in the whole phase spac
and leads to a linear scaling ofd f with ECRH input power.
Within this approach,d f is expressed through a Green
function corresponding to~71! as

d f ~z!52pE d0
5J~z0!G~z0 ,z!L̂RFf 0~z0!, ~82!

with nstat51.
The supra-thermal particle flux,Gn' , is of particular im-

portance for the confinement since it can strongly influen
the radial electric field through the ambipolarity condition7

Note that the procedure for finding the self-consistent rad
electric field requires the iterations of this field and, the
fore, a relatively fast evaluation of the supra-thermal parti
flux Gn' is necessary. The usual expression for particle fl
defined in guiding center variables and flux coordinates~c,
u, w! can be transformed to the average over the Poinc´
cuts as follows:
P license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Gn'~c0!5E d3pE
2p

p

duE
2p

p

dw
vg•¹c

u¹cu U ]r

]u
3

]r

]w U f
5E d3pE

2p

p

duE
2p

p

dwE dc8d~c82c0!Ag fvg

•¹c

5E d3pE d3rd~c82c0! f vg•¹c

52p(
m

E d5uGm~u!d~ t2u5!E
0

tbm
dt

3d~c~Z~zm ,t!!2c0!vg•¹cuz5Z(zm ,t)

52p(
m

E d5uGm~u!d~ t2u5!

3@Q~c~Z~zm ,tbm!!2c0!2Q~c~Z~zm,0!!

2c0!#. ~83!

Here, when integrating overt, Eqs.~14! for the particle or-
bits have been used. The energy flux is obtained in the s
way and it differs formGn' by the factorwk(u) in the sub-
integrand.

Expression~83! does again mean an intuitively obviou
procedure for the evaluation of total fluxes~see also Ref. 6!.
When the particle crosses a surface labeled withc, its weight
is either added to or subtracted from the value of the flux
a given surface depending on the direction of the crossin

The particular form of the exchange frequencyneff in the
thermal range of energies has little consequences for the
sult. In the present modeling, it is assumed to be infinite
energieswk,T and equal to zero forwk.T. This particular
case ofneff is realized with an additional boundary conditio
for the Green’s function, Eq.~74!, and the second expres
sions in~81! have to be used.

In Figs. 21 and 22, particle and energy fluxes of sup
thermal particles are shown, respectively. The particle sou
is on the magnetic axis in the magnetic field minimum
cated at the elliptic cross section of W7-AS. Trapped p
ticles with a pitch valuel50.1 and fixed energiesw0 rang-
ing from w052Te0 to w059Te0 are generated there. Thu
the supra-thermal particle distribution function is a station
Green’s function corresponding to~71!. The source rate in
these computations wasnstat5Psource/w0 where Psource

5400 kW is the source power. The profiles of the equil
rium parameters were the following,Te(r )5Te0(1.2
2(r /a)2), ne(r )5ne0(1.22(r /a)2)2, F(r )5Te0r 2/(ea2),
whereTe053 keV, ne053•1013 cm23, anda517.4 cm, re-
spectively. The computation of one such profile requi
from minutes to tens of minutes on a DEC Alphastation 5
depending on accuracy. Therefore, iterations of the ra
electric field in presence of a supra-thermal particle flux
possible. From those figures one can also see, that resc
of the Larmor radius and of the collision operator has pr
tically no effect on the results.
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V. SUMMARY

In the present paper, the stochastic mapping techni
has been developed and realized in a numerical code. W
the help of this technique, the drift kinetic equation is solv
in the long-mean-free-path regime for a stellarator with ar
trary geometry and topology of the magnetic field, allowi
also for islands and ergodic magnetic-field layers. The te
nique has been benchmarked against conventional M
Carlo methods. The regimes with and without a radial el
tric field are well reproduced. On the other hand, the m
ping procedure is significantly faster~2 and more orders o
magnitude depending on the complexity of the magne
field!. Note that the speed of the mapping solver is pra
cally independent of the complexity and computational c
of the magnetic field, therefore, the gain will be even mo
significant for configurations with a broad magnetic-fie

FIG. 21. Particle fluxGn' vs normalized flux labelc/cb . The particle
energy ranges fromw052Te0 to w059Te0 from bottom to top. The dotted
lines are computed with Larmor radius and collision operator reduced b
factor of 2.

FIG. 22. Energy fluxGw' vs normalized flux labelc/cb ~same values of
energy as in Fig. 21!.
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spectrum. Since the preloading procedure is relatively t
consuming, the method is most effective in a case w
‘‘global’’ computations of the particle distribution functio
are needed, e.g., for the studies of kinetic effects of
heating, or for the computation of profiles of transport co
ficients for fixed magnetic configurations. The comparis
with effective ripple computations using the field line int
gration technique shows that even for the very sensi
quasi-helically symmetric configuration, the errors of dr
orbits in SMT are very small.

The application of SMT to a global computation
supra-thermal particle fluxes in a stellarator shows that
method is fast enough to allow for iterations of the rad
electric field using the ambipolarity condition taking into a
count fluxes from supra-thermal particles. Therefore,
SMT combined with a neoclassical balance code will per
the self-consistent modeling of particle and energy balanc
a stellarator with strong electron or ion cyclotron heati
where the convective transport of supra-thermal partic
plays a significant role. At the same time, it is shown th
convective fluxes are very sensitive to the detailed struc
of the supra-thermal particle source. In the case of ECR
nonlinear effects of wave–particle interaction are domin
in the formation of such a source.20 The method for modeling
this effects has been recently developed and will be inclu
in future models based on SMT.
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APPENDIX A: STOCHASTIC MAPPING EQUATION

Using the fact that trajectories,Z(z,t), are solutions to
~14!, one can transform the DKE~1! to a set of Lagrangian
variableszL[(u,t), introduced as follows:

zi5Zi~zm ,t!, ~A1!

where the setzm5zm(u) is defined in the text after~14!.
Equation~1! takes the form

] f

]t
5

1

Jm

]

]zL
i JmS Dm

i j ] f

]zL
j 2Fm

i f D 2n f 1Q, ~A2!

where

Jm5J~z!
]~z!

]~zL!
5Jm~u! ~A3!

is the Jacobian of coordinate setzL given by~18!. The Jaco-
bian ~A3! is independent oft. The components of the diffu
sion tensor and the drag force are transformed accordin
the rules of tensor algebra,

Dm
i j 5 c̄k

i c̄l
jDkl, Fm

i 5 c̄k
i Fk, ~A4!
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where the transformation coefficientsck
i []zL

i /]zk satisfy
~26! and ~27!. The bounce time,tbm(u), can be introduced
as the smallest nontrivial solution of the equation

Fm8~Z~zm ,tbm!!50, ~A5!

with respect tot. Here,m8 labels all possible cuts. It corre
sponds to the change in the trajectory parametert needed to
reach the nearest cut along the orbit. This can be the s
cut as the initial one if the orbit belongs to a ‘‘trapped
particle. The particular value of the indexm8 corresponding
to this solution defines a discrete mappingm85Mm(u) in
Eq. ~13!. In the long-mean-free-path regime, the distributi
function changes only weakly during the bounce time, i
within the interval 0,t,tbm . Therefore, Eq.~A2! can be
integrated overt from 0 totbm assuming that the distribution
function f on the right-hand side is independent oft. This
results in

Gm8~u8!
]~u8!

]~u!
5Gm~u!1

]

]ui]uj D̄m
i j ~u!Gm~u!

2
]

]ui Fm
i ~u!Gm~u!2 n̄m~u!

1Qm~u!, ~A6!

where m8 and u8 are given by~13!, and the rest of the
notation is given by~17!–~25!. Since the terms neglected o
the right-hand side of~A6! are quadratic with respect to th
small parametertbm /tc wheretc is the collision time, with
the same accuracy one can replace the right-hand side
the integral

Gm8~u8!
]~u8!

]~u!
5E d5u9^d~u92u1du~u9!!&

3~12 n̄m~u9!!~Gm~u9!2Qm~u9!!,

~A7!

wheredu(u9) are small random numbers satisfying~20!. It
should be mentioned that the quantitiesn̄m andQm are small
in the first order overtbm /tc . Transforming thed-function
with the help of

d~u92u1du~u9!!5
]~Um~u!!

]~u!

3d~Um~u!2Um~u91du~u9!!,

~A8!

and using~13!, which implicitly definem andu throughm8
andu8, one obtains Eq.~17!. Note that in order to simplify
the notation in~17!, the dummy integration variableu9 was
replaced withu.

APPENDIX B: METRIC DETERMINANT OF THE LMCS

In order to obtain the metric determinantAg entering
~3!, one notices that the only nonzero contravariant com
nent of the magnetic field isB3[B•¹x35Bw. Using

¹•B[
1

Ag

]

]xi AgBi5
1

Ag

]

]x3 AgBw50, ~B1!
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one obtains that the productAgBw is constant along a
magnetic-field line defined by (x1,x2)5const. Since due to
~45! and~43! the coordinatesx1 andx2 coincide withR and
Z on the reference cut,Ag5R there. Therefore, one obtain

Ag5
x1Bw~x1,x2,wn!

Bw~R~x!,Z~x!,w~x!!
, ~B2!

where the azimuthal componentBw is considered in~B2! as
a function of cylindrical coordinates andR(x), Z(x), w(x)
are cylindrical coordinates of the point on the minimum
cut, w5x35qm(u) ~x are magnetic coordinates of th
point!. In the case of stellarator symmetrywn50 in ~B2!. In
zero order with respect to the Larmor radius, the parti
velocity is along the magnetic field,vg5v ih. Using the defi-
nitions of the JacobianJm and the hyper-surfaceFm , Eqs.
~18! and ~15!, respectively, and taking into account thatvg

•¹qm50, one obtains

Jm5
x1p2v iBw~x1,x2,wn!

B~R~x!,Z~x!,w~x!!

5
p3lB̂w~x1,x2,wn!

m0gB~R~x!,Z~x!,w~x!!
. ~B3!

Here p and l are momentum modulus and pitch on t
minimum-B cut, respectively, and B̂w(R,Z,w)
5RBw(R,Z,w) is the physical toroidal component of th
magnetic field.

APPENDIX C: MOMENTS AND FLUXES

It is of interest to derive expressions for certain loc
moments of the distribution function,

^A&p[E d3pA f. ~C1!

These moments of interest are the particle density, the pa
lel current density and the kinetic-energy density whereA is
introduced asA51, A5ev i and A5mec

2(g21), respec-
tively. In order to reconstruct the distribution function and
moments away from a minimum-B cut, one uses the follo
ing assumptions. The particle cross-field displacement du
the drift and due to effects of collisions is neglected for t
computation of particle orbits during one bounce time. T
means that on distances of the order of one magnetic-
period, the distribution function expressed in terms of inva
ants of motion in the momentum space can be conside
constant along the magnetic-field line, i.e., the distribut
function in any spatial point is taken to be the same as in
point on the minimum-B cut which has the same values
the magnetic coordinatesx1 andx2. For the reconstruction a
a given point, one has to use this minimum-B cut whe
there exists no local maximum of B along the magnetic fi
line between the cut and the given point.

To simplify the notation, one can useB̂w

5B̂w(x1,x2,wn) for the toroidal physical component of th
magnetic field on the reference cut,Bm5B(xm) for the
magnetic-field modulus on the minimum-B cut, andB
5B(x) for the magnetic-field modulus in the consider
point. All three quantities belong to the same magnetic-fi
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line. Furthermore, one can neglect the variation of the e
trostatic potential along the field line. This means that
kinetic energy and, as a consequence,p are the approximate
constants of motion. Thus one gets

f ~x1,x2,x3,p,l!5 f ~x1,x2,xm
3 ,p,lm!, ~C2!

with

12l2

B
5

12lm
2

Bm
. ~C3!

The last expression follows from the conservation of t
magnetic moment. For the moments one obtains

^A&p52pE
0

`

dpE
21

1

dlp2A f

5E
0

`

dpE
21

1

dlmQ~ ulmu2lb!
2pmegB

ulupB̂w

AuGmu,

~C4!

where

ulu5A12
B

Bm
~12lm

2 !, lb5A12
Bm

B
. ~C5!

In particular, for the parallel current density one gets

j i5
2peB

B̂w

E
0

`

dpE
21

1

dlmQ~ ulmu2lb!uGmusign~lm!.

~C6!

Note that neglecting the particle displacements from the fi
line distorts bootstrap effects in the computation of para
currents. If this effect is of interest, the full orbit should b
used with help of~28! substituting thereA(z)5ev i(z)d(z1

2x1)¯d(z32x3)d(z62t).
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