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Temporal evolution of drift Alfvé n waves and instabilities in an inhomogeneous plasma
with homogeneous shear flow
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The temporal evolution of drift Alfve´n waves in an inhomogeneous plasma of low and finite pressure with
homogeneous shear flow is studied as an initial value problem without the use of spectral expansion in time.
The cases of plasma with cold and hot ions, weak and strong flow shear are considered separately. It is shown
that the conventional modal structure of the stable and unstable drift and Alfve´n waves holds only for a limited
time in the initial stage of its evolution. For larger times, nonmodal effects due to the velocity shear define the
development of drift Alfve´n waves and drift Alfve´n instabilities. For the regimes of low flow shear, which
corresponds to the period of the low-to-high transition, the long time evolution of these instabilities as well as
their saturation are determined by the nonlinear effects such as the nonlinear decorrelation effect. In contrast,
the plasma with strong flow shear, which corresponds to the regime of the developed transport barriers, is
stable against the development hydrodynamic drift Alfve´n and resistive drift Alfve´n instabilities. The frequency
increase caused by the shear flow brings the Alfve´n wave phase speed close to the electron thermal speed
where strong electron Landau damping occurs. At this stage, a kinetic approach for the description of these
waves becomes necessary.
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I. INTRODUCTION

It is well recognized now that the short-wavelength dri
type waves are the source of anomalous transport in toro
confinement systems. There has been substantional the
cal progress in understanding the structure and stability
these waves in a sheared magnetic field. The conventi
theory of short-scale drift toroidal modes is based on
‘‘ballooning transform’’ @1#, perhaps, the most effectiv
method for calculating the spectrum and global structure
drift-ballooning modes@2#.

The experimental discovery of the transition from t
low-confinement state to the high-confinement state,
which the suppression of turbulence and reduction of ano
lous transport was detected, open a new page in the theo
drift wave and drift turbulence in toroidal confinement sy
tems. Experiments have shown that, together with the t
sition to the improved confinement state (H-mode regime!, a
tokamak plasma develops large variations in the radial e
tric field, and strong poloidal plasma shear flows@3–6#. The
large variations are also limited to the same small edge la
in which the velocity shear lengthLv is found to be much
less than the magnetic shear lengthLB . In fact, the shearing
rate in this region is of the order of, or even larger than,
typical drift wave frequency. It stands to reason, then, t
the nature and evolution of the low frequency waves a
instabilities in the edge layer will be different from that

*Electronic mail address: mikhailenko@pem.kharkov.ua
1063-651X/2002/66~6!/066409~12!/$20.00 66 0664
al
eti-
of
al
e

f

n
a-
of

-
n-

c-

er

e
t
d

the plasma core, where the magnetic shear is the prim
determinant of the spatial structure and temporal evolution
these waves. Unfortunately, the ballooning transform met
ceases to be useful for problems that involve signific
shear flow, and may be suitable only in finding the spectr
~and growth rates! in the limit of vanishing velocity shea
@7–10#. Other methods have to be developed for the analy
of a plasma with strong flow shear. In Ref.@11# a new ap-
proach to the theory of drift waves in plasma with strong
sheared flows (Lv!LB) was proposed. The character of flu
tuations for such a system is dominated by the sheared fl
and minor effects of magnetic shear can be safely omitted
Ref. @11# the effects of the shear flow with a constant she
ing rate were worked out for low frequency driftlike pertu
bations in a collisional~Hasegawa-Wakatani model in a sla!
as well as a collisionless~Hasegawa-Mima model! plasma
@11#. It was shown that the shear flow has not only a sta
lizing effect on the resistive drift instability, but also leads
principal changes in the structure of the basic drift wa
Consequently the structural elements of the drift turbule
and, thus, the correlation properties of the turbulence
bound to change. The solution of the relevant initial val
problem@11# also reveals strong nonmodal features like tim
dependent frequencies and wave numbers and nonsepa
spatiotemporal behavior of the perturbations@12–17#. The
standard form for the modal structure of drift perturbatio
exp(ikyvdet), with vde being the electron diamagnetic dri
velocity, survives in a shear flow for a limited time onl
With increasing time, this wave ultimately transforms into
convective cell with zero frequency and an amplitude dec
©2002 The American Physical Society09-1
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ing as 1/t2. It was also shown in Ref.@11#, that the radial
wave number of the drift wave grows secularly with time
shear flows~see also Refs.@8,9#!. Implying the onset of the
associated nonlinear effects, this drives initially minor effe
of the magnetic shear into greater insignificance. This
proach proves to be useful also in the studies of temp
evolution of electrostatic toroidal ion temperature gradi
driven instability@20# and Rayleigh-Tailor instability@21# in
plasma with shear flow.

In our present paper we extend these studies by includ
the electromagnetic waves and instabilities. We underta
what may be called, a nonmodal~in time! investigation of
the drift Alfvén wave in the presence of a sheared veloc
field. The drift Alfvén wave is considered to be an importa
component of the low frequency plasma turbulence wh
may be responsible for the anomalous transport in toro
confinement devices. Its structure and stability propertie
the strongly sheared edge plasma of a tokamak will, perh
bear crucially on our understanding of the nature of
H-mode. Since the edge layer is rather narrow, we emplo
slab model to study both a low (me /mi@b) and finite
(me /mi!b!1) pressure plasma, whereb54pP/B2 is the
ratio of thermal to magnetic pressure. Driven by the exp
ment, we also assume the velocity shear lengthLv to be
much less than the magnetic shear lengthLB . In fact, the
confining magnetic field will be considered to be shearl
and homogeneous. The temporal evolution of the spa
Fourier modes of perturbations is studied directly as an
tial value problem; the standard spectral expansion is
expected to reveal essential features of the temporal ev
tion. In Sec. II the basic equations governing the tempo
evolution of drift Alfvén waves in a plasma with homoge
neous shear flow~constant shearing rate! are derived. In
Secs. III and IV, the initial value problem is approximate
solved to chart out the time history of the mode: in t
former the plasma has cold ions,Ti!Te , while in the latter
the electron and ion temperatures are comparable,Ti<Te ,
whereTi andTe are the respective the ion and electron te
peratures.

II. BASIC EQUATIONS

The governing equations of the present model are
equations for the longitudinal motion of electrons, for t
quasineutrality of the current density, and for the pertur
tions of the electron pressurep̃e and ion pressurep̃i . In the
drift approximation, the system of equations reduces to
following system for the parallel component of the perturb
magnetic potentialÃi , the electrostatic potentialf̃, and for
p̃e and p̃i @22#,

d

dt S Ãi2
c2

vpe
2

¹'
2 Ãi D 1vde

]Ãi

]y

52c
]f̃

]z
1

c

ene0

] p̃e

]z
1

c

ene0B0
“Ãi•@b03“ p̃e#,

~1!
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dp̃e

dt
1ene0vde

]f̃

]y
1

cGeTe0

4pe S ]

]z
1

1

B0
@“Ãi3b0#•“ D

3¹'
2 Ãi50, ~2!

dp̃i

dt
2eni0vdi

]f̃

]y
50, ~3!

S d

dt
1vdi

]

]yD¹'
2 f̃

52
c

eni0B0
¹'~@b03“ p̃i #•“ !¹'f̃2¹'~vi i•“ !¹'f̃

2
vA

2

c S ]

]z
1

1

B0
@“Ãi3b0#•“ D¹'

2 Ãi , ~4!

with vpe being the electron plasma frequency,vA being the
Alfvén velocity, G55/3 being the adiabatic constant an
vde(di)57c/(ene0B0)dPe0(i0) /dx being the electron~ion!
diamagnetic velocity.Pe0(i0)(x) is the inhomogeneous equ
librium electron ~ion! pressure. The operatord/dt in Eqs.
~1!–~4! is defined for a shear flow transverse to the magn
field B05B0b0 ~directed along thez axis!, with uniform
shearing rates, i.e,v0(x)5v08xey , wherev08 is independent of
x, as

d

dt
5

]

]t
1v08x

]

]y
1vE•“ ~5!

with vE5(c/B0)@b03“f̃#.
The conventional way to resolve this system of equatio

or their particular forms is to assume the perturbed quanti
vary as (Ai ,f,pe ,pi);@Ai(x),f(x),pe(x),pi(x)#exp(ikyy
1ikzz2ivt). It is known, however,@see, for example, Ref
@24#!# that for the case of shear flow the solutions of su
modal form do not give the complete solution to the proble
and more rigorous in this case will be the solution of t
initial value problem for the system considered. The appli
tion of the direct and inverse Laplace transform in time fo
mally complete the solution of the initial value problem@24#.
The Laplace inversion integrals, however, appear to be
volved for the computation of time evolution for finite tim
values. As a rule this method gives analytical results only
an asymptotically large times. These asymptotic results m
become useless in the comparative analysis of the rela
importance of nonlinear and linear effects in the evolution
time of the plasma instability in shear flow, because all te
poral processes in time evolution, which in some defin
time may be more important than the modal or the nonlin
ones, are omitted. Therefore it is unlikely to receive on t
way analytical solutions valid for any finite time and to an
lyze with them the temporal evolution of drift Alfve´n waves
or stabilization of the drift Alfve´n instabilities.

Here we have used another approach, which gives e
and transparent treating of the problem considered. I
known that with such homogeneous shear flows, the solu
9-2
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of the initial value problem is greatly facilitated by a tran
formation to coordinates which are convected with t
sheared flow. Such a transformation is given by@11# ~see also
Refs.@12–19#!

t5t, j5x, h5y2v08xt, z5z. ~6!

In the new coordinates the linearized system~1!–~4! for the
nondimensional variablesf5ef̃/Te , Ai5eAi /eTe , pe

5 p̃e /n0eTe , pi5 p̃i /n0eTe becomes

]

]t S Ai2
c2

vpe
2

¹'
2 Ai D 1vde

]Ai

]h
52c

]f

]z
1c

]pe

]z
, ~7!

]pe

]t
1vde

]f

]h
1G

c2

vpe
2

vTe
2

c

]

]z
¹'

2 Ai50, ~8!

]pi

]t
2vdi

]f

]h
50, ~9!

S ]

]t
1vdi

]

]h D¹'
2 f5v08

]

]h S ]pi

]j
2v08t

]pi

]h D2
vA

2

c

]

]z
¹'

2 Ai ,

~10!

where the operator¹'
2 is

¹'
2 5

]2

]x2
1

]2

]y2
5

]2

]h2
1S ]

]j
2v08t

]

]h D 2

. ~11!

The new coordinates were designed to transfer the sp
dependence to the time domain. The preceding spatially
mogenous system may be Fourier analyzed in the new sp
variablesj, h, z as

Ai~t,k' ,l ,kz!5E E E djdhdzAi~t,j,h,z!

3exp$2 ik'j2 i l h2 ikzz%, ~12!

taking into account the condition thatk'Lpe,i@1, where
Lpe,i is the scale length of the inhomogeneous equilibri
electron~ion! pressure, to obtain the following system for th
evolution of the spatial Fourier harmonicsAi , f, pe , and
pi ,

]

]T F S 11
c2l 2

vpe
2 ~11T2!D AiG1 iCeAi52 i

c

vA
Sf1 i

c

vA
Spe ,

~13!

]pe

]T
1 iCef5 iG

c

vA

vTe
2

vpe
2

Sl2~11T2!Ai , ~14!

]pi

]T
5 iCif, ~15!
06640
ial
o-
ial

]„~11T2!f…

]T
1 iCi~11T2!f52Tpi2 i

vA

c
S~11T2!Ai .

~16!

In systems~13!–~16!, rs5vs /vci is the ion-sound Larmor
radius,vs5(GeTe /mi)

1/2 is the ion-sound velocity,vTe is the
electron thermal velocity, andvA is the Alfvén velocity. The
dimensionless timeT and the dimensionless parametersS,
Ce , andCi are defined as

T5v08t2
k'

l
, S5

kzvA

v08
, Ce,i5

lvde,di

v08
. ~17!

Systems~13!–~16! together with the Fourier transformed in
tial data Ai(0,k',l ,kz), pe(0,k',l ,kz), pi(0,k',l ,kz), and
f(0,k' ,l ,kz) constitutes the general initial value problem.
the following, the temporal evolution of the drift Alfve´n
waves in a plasma with cold ions (Ti!Te) and with hot ions
(Ti<Te) in the case of ‘‘weak’’ flow shear, whenS@1, is
considered.

III. TEMPORAL EVOLUTION OF ALFVE ´ N WAVES
IN A PLASMA WITH COLD IONS

This section is devoted to a study of Alfve´n waves in a
homogeneous as well as an inhomogeneous~in local ap-
proximation! plasma with cold ions,Ti→0, for a broad
range of electron pressure withb54pP/B2 ~the ratio of
thermal to magnetic pressure! spanning the rangesb
!me /mi and 1@b@me /mi .

A. Temporal evolution of Alfvén waves in a homogeneous low
pressure plasma„b™me Õmi…

For b!me /me , i.e., with bothPi0→0 andPe0→0, the
system of equations~13!–~16! reduces to

d2
„~11T2!f…

dT2
1S2

vTe
2

vA
2

1

l 2rs
2
f50. ~18!

The solution to Eq.~18! has a modal form with frequenc
V5kivTe / lrs for T!1. For larger timesT@1, it may be
approximately solved for the electrostatic and magnetic
tentials,

f'
1

T3/2
~C1Tiv11C2T2 iv1!, ~19!

Ai~T!'
ic

kivA
2

1

T5/2S C1

1
2 1 iv1

Tiv11
C2

1
2 2 iv1

T2 iv1D ,

~20!

wherev15AV2/(v08)
221/4. It follows from Eqs.~19! and

~20! that the flow shear has fundamentally altered the mo
time behavior from the conventional to a powerlike tim
dependence of the spatial Fourier harmonic of the pertur
potentials. An algebraic decay is imposed with the magn
potential decaying more rapidly with time than the elect
9-3
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static potential. This feature—the different time depende
of different perturbations in a linear system, is strictly a no
modal element introduced by the velocity shear.

B. Temporal evolution of Alfvén waves in a finite pressure
plasma „bšme Õmi… with cold ions

For cold ions,Ti→0, but for the finite electron pressur
the appropriately approximated system~13!–~16! may be
combined into a single third order differential equation f
f(t,k' ,l ,kz),

]2

]T2 H S 1

11T2
1

c2l 2

vpe
2 D ]

]T
@~11T2!f#J

1S2
]

]T
@„11 l 2rs

2~11T2!…f#1 iCeS
2f

1 iCe

]

]T H 1

11T2

]

]T
@~11T2!f#J 50. ~21!

Equation~21!, together with the initial conditions obtaine
with Eqs.~13!–~16!,

f~T,k',l ,kz!uT52k' / l5f~0!, ~22!

]f

]T U
T52k' / l

5kzvAF2

S

lk'

k'
2 1 l 2

f~0!2 i
vA

c
Ai~0!G , ~23!

]2f

]T2 U
T52k' / l

5kz
2vA

2pe~0!1kz
2vA

2

3F 8

S2

~ lk'!2

~k'
2 1 l 2!2

2
2

S2

l 2

l 21k'
2

21Gf~0!

2
1

S

vA

c
kz

2vA
2FC12i

lk'

k'
2 1 l 2GAi~0!, ~24!

constitutes the initial value problem for the linear drift a
Alfvén waves in a plasma shear flow with cold ions. In t
limit of weak flow shear, i.e.,S@1, the initial value problem
may be formally solved in the eikonal approximation

f~T!5
1

11T2
expS SE

2 k'/ l

T

dT8 f ~T8! D , ~25!

where

f ~T!5 f 0~T!1
1

S
f 1~T!1

1

S2
f 2~T!1•••. ~26!

From this general solution we will first extract the wav
forms pertinent to the homogeneous plasma (Ce50), and
then the drift waves in an inhomogeneous plasma (CeÞ0).

If Ce50 ~homogeneous plasma!, the mode equation~21!
may be integrated once to obtain the inhomogeneous di
ential equation
06640
e
-

r-

]

]T H S 1

11T2
1

c2l 2

vpe
2 D ]

]T
@~11T2!f#J

1S2$@11 l 2rs
2~11T2!#%f

5S2@rs
2~ l 21k'

2 !f~0!1pe~0!#. ~27!

Notice that the integrability implies the existence of a co
stant of the motion which lowers the effective dimensional
of the system; in this from three to two. ForS2@1, the
asymptotic solution for the homogeneous equation~27!
could be easily written in terms of elliptic integrals. We sha
however, avoid that rather opaque representation, and w
approximate but simpler forms relevant to different but we
defined intervals of the normalized timeT. We find that
Alfvén waves in their ‘‘classical’’ modal form~with thermal
corrections!,

f1,2~t!'exp$6 ik ivAt@11~k'
2 1 l 2!rs

2#1/2%, ~28!

will exist only within the time interval 0,t,(v08)
21(uTu

,1), i.e., for physical times less than the inverse of t
shearing rate. In the next well-defined time interval

1!T!~ lrs!
21, ~29!

the Alfvén waves begin to acquire the nonmodal slow-dec
imposed on a modal form,

f1,2;
1

T
exp~6 iST!. ~30!

This mixture of the modal and nonmodal behavior continu
in the interval

~ lrs!
21!T!~ lrs!

21
vTe

vA
, ~31!

in which the solution

f1,2;T23/2expS 6 i
S

2
lrsT

2D ~32!

is characterized by a ‘‘frequency’’ increasing linearly wi
time. Finally, for asymptotic times~for times larger than the
various ‘‘times’’ in the problem!,

T@~ lrs!
21

vTe

vA
, ~33!

the solution

f1,2;T22expS 6 iST
vTe

vA
D ~34!

corresponds to an algebraically decaying but oscillat
mode. In the ultimate stage, the wave that began as an o
nary Alfvén wave ends up propagating with the electron th
mal speedvTe . This metamorphosis is due to the finite ele
tron mass effect which is usually omitted in the study
Alfvén waves in a plasma with finite pressure,b.me /mi .
Through the agency of the shear which transfers energy
tween different wave numbers~in particular induces upward
9-4
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cascading!, this normally neglected term becomes domina
for large enough times when the effective wave numb
become large. Since the waves propagating with the the e
tron thermal speed will be subject to strong electron Lan
damping, the flow shear may become a rather effec
mechanism for damping the Alfve´n or drift Alfvén waves in
the shear layer of the high-confinement tokamak dischar
the shear connects the wave~which may be growing! to the
highly damped part of the spectrum causing it to ultimat
decay. Needless to say that for these conditions a kin
description for the Alfve´n wave evolution becomes nece
sary.

In the space-time coordinatesj, h, t, solutions~28!–~34!
have the form

f1,2~ t,j,h,z!5
1

~2p!3E dk'E dlE dkzF1,2~ t,k' ,l ,kz!

3eikj1 i l h1 ikzzeiG6(t,k,l ,kz), ~35!

whereF1,2(t,k' ,l ,kz) contains the initial data, and the non
exponential dependence of these solutions. For a w
packet peaked about a central wave numberK0
5(k'0 ,l 0 ,kz0) the components of the group velocity in th
comoving frame are equal to@11#

vgx52
]

]t S ]G6

]k'
D

k'0 ,l 0 ,kz0

,

vgy52
]

]t S ]G6

] l D
k'0 ,l 0 ,kz0

, vgz52
]

]t S ]G6

]kz
D

k'0 ,l 0 ,kz0

.

~36!

It follows from the solution that the ‘‘classical’’ pattern fo
the propagation of an Alfve´n wave packet with the group
velocity

vgx57vA

k0i

k0'

k0'
2 rs

2

„11~k0'
2 1 l 0

2!rs
2
…

1/2
,

vgy57vA

k0i

l 0

l 0
2rs

2

„11~k0'
2 1 l 0

2!rs
2
…

1/2
,

vgz57vA„11~k0'
2 1 l 0

2!rs
2
…

1/2, ~37!

will be found only within times 0,t,(v08)
21~or uTu,1).

In the time interval~29!, vgz5vA andvgx5vgy50, i.e., the
wave packet does not propagate across the magnetic
For times~31!, we have

vgx56vAk0irs , vgy57vA

k0'

l 0
k0irs ,

vgz57vAl 0rsS v08t2
k0'

l 0
D , ~38!

revealing that in this interval, the component of the gro
velocity directed along the velocity inhomogeneity,vgx , is in
a direction opposite to the initial~37!, i.e., after a period of
blocking, the packet is reflected inx. In times~33! we have
06640
t
s
c-
u
e

s;

y
tic

ve

ld.

p

ultimatelyvgx5vgy50 andvgz5vTe ; the packet propagate
strictly along the magnetic field.

The particular solution of inhomogeneous equation~27!,

f* 5
r2~k'

2 1 l 2!f~0!1pe~0!

11rs
2@ l 21~k'2vE8 l t!2#

~39!

is of the type obtained for a convective cell or a vort
@11,25,23#; it is also the solution for the ultimate stage of th
evolution of the drift wave@11#. Taking into account the
initial conditions~22! and~23!, we write down the complete
solution for the potentialf,

f~t!5C1f1~t!1C2f2~t!1f* ~t!, ~40!

where the constantsC1,2 are calculated to be

C1,25S 11
k'

2

l 2 D 21/2

@11rs
2~ l 21k'

2 !#21/4F f~0!2pe~0!

@11rs
2~ l 21k'

2 !#2

7 i
vA

c
Ai~0!6

1

SS lk'

l 21k'
2

f~0!

2
lk'rs

2@rs
2~ l 21k'

2 !f~0!1pe~0!#

@11rs
2~ l 21k'

2 !#2 D G . ~41!

In deriving C1,2, small terms of the order (me /mi)(k'
2

1 l 2)rs
2/b have been omitted. Thus, in a homogeneo

plasma the perturbation spectrum consists of two Alfv´n
waves, determined by Eqs.~28!–~34!, and a convective cel
~39!. The temporal evolution of the electron pressure per
bationpe is obtained from Eqs.~13! and ~16!,

pe~t!52rs
2@~ l 21~k'2v08l t!2#f~t!1rs

2~ l 21k'
2 !f~0!

1pe~0!, ~42!

which grows asT in the time interval~29!, like T1/2 in the
time interval~31!, and stays constant for larger times. Fro
Eqs.~39! and~42!, we may also learn that the electron pre
sure perturbation connected with the convective cell,f* (t),
may be no larger thanO(S22).

From Eq. ~16!, we find that the magnetic potentialAi
associated with the Alfve´n waves is given by

Ai(1,2)52
c

vA
f (1,2)~T!S 11 l 2rs

2~11T2!

S 11
vA

2

vTe
2

l 2rs
2~11T2!D D

1/2

1O~S!, ~43!

which, for the successive intervals enumerated earlier,
comes in Eq.~29!,

Ai(1,2);2
1

T
exp~6 iST!, ~44!

in Eq. ~31!

Ai(1,2);2
1

T1/2
expS 6 i

S

2
lrsT

2D , ~45!
9-5
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and in interval~33!

Ai(1,2);2
1

T2
expS 6 iST

vTe

vA
D . ~46!

For the convective cell, the magnetic potential is

Ai* ~T!52i
c

vA

rs
2l 2

S
T

rs
2~k'

2 1 l 2!f~0!1pe~0!

@11 l 2rs
2~11T2!#2

. ~47!

It grows asT whenT,( lrs)
21, and decays strongly asT23

for T.( lrs)
21. It is interesting to note that in this case

finite pressure plasma, as well as in the case of low pres
plasma, the velocity shear introduces different nonmo
time dependence for different perturbations.

The reader may note that the asymptotic solutions of
~27! for extremely strong shear,S!1, are readily obtained
by the transformation of Eq.~27! to the ‘‘slow’’ time variable
T15ST. With T1 as the time variable, Eq.~27! becomes
-

he
a

06640
re
al

q.

]

]T1
H S S2

T1
2

1
l 2c2

vpe
2 D ]

]T1
F S 11

T1
2

S2D f~T1!G J
1F11rs

2l 2S 11
T1

2

S2D Gf~T1!

5rs
2~k'

2 1 l 2!f~0!1pe~0!. ~48!

For T1 finite andS→0, i.e., for T.S21, one obtains from
Eq. ~48! solutions~34! for Alfvén waves, and solution~39!
for the convective cell.

C. Inhomogeneous plasma with cold ions

In this section, asymptotic solutions for weak shearS
@1) of Eq. ~21! are derived separately for the weak (S@C
;1), and strong (S;C@1) plasma inhomogeneities.

1. Weak plasma inhomogeneity

After substitution of Eq.~25! with Eq. ~26! into Eq. ~21!,
the three solutions of the inhomogeneous plamsa may
written as
f1,2~T!5
1

~11T2!1/2
„11 l 2rs

2~11T2!…1/4S 11
c2l 2

vpe
2

~11T2!D 1/4 exp5 6 iSE
2 k'/ l

T

dT8S 11 l 2rs
2~11T82!

11
c2l 2

vpe
2

~11T82!D 1/2

1
iC

2 F 1

lrsA11 l 2rs
2

tan21S lrsT8

A11 l 2rs
2D 2

1

Alrs

vA
2

vTe
2
A11

c2l 2

vpe
2

tan21S cl

vpe

T8

A11
c2l 2

vpe
2

D G 6 , ~49!
ma

mes

the

f-
tive
eos
and

f3~T!5
11rs

2~ l 21k'
2 !

11 l 2rs
2~11T2!

3expH 2 i
C

lrsA11 l 2rs
2 F tan21S lrsT

A11 l 2rs
2D

1tan21S k'rs

A11 l 2rs
2D G J , ~50!

with Eq. ~49! describing the Alfve´n wave modified by the
plasma inhomogeneity, and Eq.~50! representing the elec
tron drift wave in the presence of the flow@11#. From Eq.
~50! ~see also Ref.@11#! one observes that because of t
shear flow, the drift wave is ultimately transformed into
convective cell. It is interesting to note that in Eqs.~49! and
~50! the terms in the exponentials connected with the plas
inhomogeneity are proportional to the tan21 function. Thus,
the dependence on plasma density inhomogeneity beco
negligible after some time, and asymptotically the Alfve´n
waves in the weakly inhomogeneous plasma will have
same form as their homogeneous counterpart~40! with
somewhat modified coefficients@determined by initial condi-
tions ~22!–~24!#. The quenching of the inhomogeniety e
fects is due to the shear-induced increase in the effec
wave numbers which renders the weakly inhomogen
plasma virtually homogenous for the highk perturbations.

2. Strong plasma inhomogeneity

In this case, the functionf 0(T) in Eq. ~26! is found from
the equation

~ f 0
211!~ f 01 id!52~11T2!l 2rs

2f 0S 11
c2

vpe
2 rs

2
f 0

2~T!D ,

~51!
9-6
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TEMPORAL EVOLUTION OF DRIFT ALFVÉN WAVES . . . PHYSICAL REVIEW E 66, 066409 ~2002!
whered5C/S. In the limit v0850 andme50, Eq. ~51! re-
duces to the well-known dispersion equation coupling
drift and Alfvén waves in an inhomogeneous plasma witho
shear flow~see, e.g., Ref.@26#!. In the presence of a shea
flow, however, Eq.~51! contains an important time depen
dence which leads to temporal changes in the structure o
plasma perturbations. Equation~51! has no simple solutions
and this is also true for the much more complicated equa
for f 1, the next function in the eikonal expansion.

For uTu!1, the solutions of Eq.~51! are similar to that
obtained for a plasma without shear flows. But for larg
time T, the shear flow will modify the solutions substantial
Writing Eq. ~51! in the form

f 0F f 0
21 id f 0111 l 2rs

2~11T2!

1
c2l 2

vpe
2 ~11T2! f 0

2~T!G52 id, ~52!

one finds forT@1, the first solution

f 01'
2 id

11 l 2rs
2~11T2!

, ~53!

which corresponds to the drift wave. For time interval~31!,
the equation

f 0
21 id f 01 l 2rs

2T250 ~54!

may be approximately solved for the two solutions

f 02,03'2
i

2
~d6Ad214l 2rs

2T2!. ~55!

These solutions are the Alfve´n waves modified by the plasm
inhomogeneity. For even larger timesT, Eq. ~33!, the ap-
proximate solutions of Eq.~51! are
06640
e
t

he

n

r

f 02,03'2
idvpe

2

2T2c2l 2
1 i

vTe

vA
S 12

vpe
2

2T2c2l 2D , ~56!

and one concludes that for strong plasma inhomogenei
the drift wave perturbation as well as the effects of the inh
mogeneity on the Alfve´n waves disappear with time. In th
long time limit, the temporal evolution of the initial distur
bance will be governed by an equation similar to Eq.~40!,
and therefore the drift Alfve´n wave structure would have
transformed into a convective cell and a strongly damp
~due to electron Landau damping! Alfvén wave.

IV. TEMPORAL EVOLUTION OF DRIFT ALFVE ´ N
INSTABILITIES IN A PLASMA WITH HOT IONS

Now we consider plasma with hot ionsTi<Te . It is well
known that in shearless case inhomogeneous plasma with
ions is unstable against the hydrodynamic drift Alfve´n insta-
bility @26#. Here we consider the effect of flow shear on t
temporal evolution of that instability in the regime of wea
flow shear, which corresponds to the stage of the period
the low-to-high (L-H) transition, and in the regime of stron
flow shear, which corresponds to the stage of the develo
transport barriers. For that goal we have to consider full s
tem of equations~13!–~16!. It is suitable now to present thi
system of equations into matrix form and to introduce n
variablesU andC , by the relations

U5~11T2!f, C5S 11
c2l 2

vpe
2 ~11T2!D Ai . ~57!

We consider the regimes of weak flow shear, for whichS
@1, S/Ce5O(1), andS/Ci5O(1) and strong flow shear
for which S!1, S/Ce5O(1) andS/Ci5O(1), separately.
Introducing a parameterl by the formal changeS→lS,
Ce→lCe , Ci→lCi , Eqs.~13!–~16! may be rewritten for-
mally as

dq

dT
1F~T,l!q50, ~58!

whereq5(C,pe ,pi ,U) is a column 4-vector and the matri
F(T,l) is equal to
F~l,t !51
ilCe

11
c2l 2

vpe
2 ~11T2!

2 ilS
c

vA
0 ilS

c

vA

1

11T2

2 i
c

vA

vTe
2

vpe
2

Sl
l 2~11T2!

11
c2l 2

vpe
2 ~11T2!

0 0 ilCe

1

11T2

0 0 0 2 ilCi

1

11T2

i
vA

c
lS

11T2

11
c2l 2

vpe
2 ~11T2!

0 T ilCi

2 .
9-7
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Clearly, the regimes of weak and strong flow shear co
spond to large and small values of the parameterl, respec-
tively.

Solution of Eq.~58! in the case of weak flow shear
looked for in the WKB form

q~T,l!5a~T!expS lE f ~T,l!dTD , ~59!

where a(T) is a column vector, and f (T,l)
5( i 50

` f i(T)l2 i . For f 0(T) one can obtain one rootf 0(T)
50, and other three roots are determined from the equa

„f 0
2~T!1 iCi f 0~T!1S2

…„f 0~T!1 iCe…

52F f 0
2~T!

me

mi

1

b
1S2G~11T2!l 2rs

2
„f 0~T!1 iCi…,

~60!

where the identityc2l 2/vpe
2 5(me /mi)(1/b) l 2rs

2 was used.
For lrs!1 in timesT!1 the right-hand side of Eq.~60! is
small. Omitting the right term we have forT!1 solutions

f 01,025 i
uCi u
2

6S Ci
2

4
1S2D 1/2

, ~61!

which define two Alfvén waves and solution

f 0352 iCe , ~62!

which defines the electron drift wave. The accounting for
right term gives the hydrodynamic drift Alfve´n instability.
The maximal growth rate will be for oscillations in the v
cinity of the crossing of the solutionsf 01 and f 03 and is equal
to ~for Ti5Te) @26#

g5A2

3
lvdelrs~11T2!1/2S me

mi

1

b
22D 1/2

. ~63!

In times T>1 the time dependence of the growth ra
becomes important. Because for timet5(v08)

21 we have

g

v08
5S lvde

v08
D lrsA me

mib
, ~64!

the long waves withlrs,(v08/ lvde)(mib/me) in times less
than the inverse modal growth rate begin to grow with no
modal growth rate~63! which is linearly growing with time.
It is obvious that for these waves the conventional estim
for the suppression of the instability due to the nonline
decorrelation effect@5#, g;v08 , with modal growth rateg,
have to be modified.

In times T.T15(1/lrs)(mib/me)
1/2, the right term in

Eq. ~60! is no longer small and conventional procedu
which gives the drift Alfvén instability with growth rate~63!
is no more valid. For these times it is suitable to rewrite E
~60! in the form
06640
-

n

e

-

te
r

,

.

F f 0
2~T!1

S2l 2rs
2~11T2!

11
me

mi

1

b
l 2rs

2~11T2!G @ f 0~T!1 iCi #

52
S2@ f 0~T!1 iCe#1 iCef 0~T!@ f 0~T!1 iCi #

11
me

mi

1

b
l 2rs

2~11T2!

.

~65!

The right term in Eq.~65! may be considered for large time
T@1, as a small. Without the right term we have three u
coupled solutions two of which

f 01,0256 iSlrsS 11T2

11
me

mi

1

b
l 2rs

2~11T2!D 1/2

~66!

may be attributed to shear flow transformed Alfve´n waves,
and the third solution

f 03~T!52 iCi ~67!

is associated with the electron drift wave transformed by
shear flow. We remind the reader that forTi50, solution
~67! corresponds to the zero frequency convective cell@11#.
With crossing conditionf 015 f 03 of wave brunches, which in
shearless case gives growth rate~63!, we find for f 05 f 01
1d f 0 that

d f 056 i
S~Ce1uCi u!

A2lrs~11T2!1/4S 11
me

mi

1

b
l 2rs

2~11T2! D 1/4.

~68!

One can see that in this stage of evolution, there is no d
Alfvén instability. This result show that in timesT.T1 shear
flow leads to the changing the frequency of the waves an
a result to the violating their coupling. However, this result
mathematical artifact, because for timesT.T1 we have@27#

g~ t !t.
lvde

v08

1

lrs
S me

mib
22D 1/2

@1, ~69!

and prior to the development this effect the nonlinear effe
similar to nonlinear decorrelation effect will suppress th
nonmodal instability.

It is followed from Eq.~63! that the hydrodynamic drift
Alfvén instability is excited in lowb plasmas withb
,me/2mi . In higherb plasma the resistive drift Alfve´n in-
stability @26# is possible. That instability is the electroma
netic counterpart of the electrostatic dissipative drift instab
ity, temporal evolution of which in plasama with shear flo
was considered in Ref.@11#. The relevant system of equa
tions for this instability will be the systems~13!–~16! with
new term nei(c

2l 2/vpe
2 )(11T2)Ai added to the left-hand

side of Eq.~13!. This term is responsible for the collisiona
9-8
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dissipation of longitudinal motion of electrons. With the a
counting for this term the equation forf 0(T) takes the form

„f 0
2~T!1 iCi f 0~T!1S2

…„f 0~T!1 iCe)

52F f 0
2~T!

me

mi

1

b
1 f 0~T!Re

me

mi

1

b
1S2G

3~11T2!l 2rs
2
„f 0~T!1 iCi…, ~70!

where dimensionless parameterRe5nei /v08→lRe was used.
For lrs!1 in timesT<1/lrs the right-hand side of Eq.~70!
is small. The maximal growth rate for resistive drift Alfve´n
instability will be for oscillations in the vicinity of the cross
ing of the solutionsf 01 and f 03 determined by Eqs.~61! and
~62!. This growth rate is equal to

g'
1

A6
neilrs

me

mib

~11T2!1/2

S 22
me

mib
D 1/2 ~71!

in the case of low collisionality (nei! lvde) and

g'
1

A3
l S rsneilvde

me

mib
D 1/2

~11T2!1/2 ~72!

in the case of strong collisionality (nei@ lvde). As in the case
of the hydrodynamic drift Alfve´n instability, in timesT>1
the time dependence of growth rates~71! and ~72! becomes
important. It results in the nonmodal evolution of waves. T
waves withlrs,(v08/nei)(mib/me) in the low collision case
and waves withlrs,@v08/(neilvde)

1/2#(mib/me) in the case
of strong collisions will grow in time with linearly growing
with time growth rate~63!. It is obvious that for these wave
the conventional estimate for the suppression of the insta
ity due to the nonlinear decorrelation effect@5# g;v08 , with
modal growth rateg also must be modified to account for th
nonmodal effects.

For timesT>1/lrs the right-hand sides in Eq.~70! are not
a small and above procedure is no more applicable. For
times it is more suitable to present Eq.~70! in the form
06640
e

il-

at

F f 0
2~T!1

l 2rs
2~11T2!S S21 f 0~T!Re

me

mib
D

11
me

mi

1

b
l 2rs

2~11T2!
G „f 0~T!1 iCi…

52
S2
„f 0~T!1 iCe…1 iCef 0~T!„f 0~T!1 iCi…

11
me

mi

1

b
l 2rs

2~11T2!

. ~73!

Omitting the right-hand side term in Eq.~73! for large times,
T@1, as a small we have three uncoupled solutions two
which,

f 01,02~T!52
Re

2
6S Re

2

4
2S2

mib

me
D 1/2

, ~74!

correspond to the linearly damped solutions and the th
solution f 03(T) is defined by Eq.~62!. It is obvious that on
these times the resistive drift Alfve´n instability is absent.
However, the timesT>1/lrs appear to be much more longe
than the inverse growth rate time. For that time we ha
estimates

g~ t !t.
nei

v08

1

lrs

me

mib

1

S 22
me

mib
D 1/2@1 ~75!

in low collisional case and

g~ t !t.
~neilvde!

1/2

v08lrs
S me

mib
D 1/2

@1 ~76!

in strong collisional case.
The above analysis shows that nonlinear decorrelation

fect is responsible for the suppression of both drift Alfv´n
instabilities in the period of theL-H transition.

For the solution of systems~13!–~16! in the regime of
strong flow shear which corresponds to the stage of the
veloped transport barriers@5#, it is suitable to introduce new
dimensionless timeT15lT. With new time the system o
equations~58! with accounted collisional dissipation take
the form
]C

]T1
1 iCe

C~T1!

11
c2l 2

vpe
2 S 11

T1
2

l2D
1

c2l 2

vpe
2

Re

S 11
T1

2

l2D C~T1!

11
c2l 2

vpe
2 S 11

T1
2

l2D
1 i

c

vA
S

U~T1!

11
T1

2

l2

2 i
c

vA
Spe50, ~77!

]pe

]T1
1 iCe

U~T1!

11
T1

2

l2

2 i
vTe

2

cvA

c2l 2

vpe
2

S

S 11
T1

2

l2D C~T1!

11
c2l 2

vpe
2 S 11

T1
2

l2D
50, ~78!
9-9
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]pi

]T1
2 iCi

U~T1!

11
T1

2

l2

50, ~79!

]U

]T1
1 iCiU~T1!1 i

vA

c
S

~11T1
2!C~T1!

11
c2l 2

vpe
2 S 11

T1
2

l2D
1

T1

l
pi50. ~80!
r

f
o

io
e

s
q

nd

e
per-

the
the
elec-

only
re-
y

In time intervallvpe /cl@T1@l with the accuracy to the
terms of the order ofO(l2) the solutions of system~77!–
~80! are

Ai~t!'expS 2
c2l 2

vpe
2

nei

3v08
S v08t2

k

l D
3D , ~81!

pe~t!'2 i
vTe

2

cvA

kivA

nei
expS 2

c2l 2

vpe
2

nei

3v08
S v08t2

k

l D
3D ,

~82!

pi~t!'const, ~83!

f~t!' i
vA

c

kivA

nei
expS 2

c2l 2

vpe
2

nei

3v08
S v08t2

k

l D
3D . ~84!

It follows from these nonmodal solutions that any distu
bances in the time intervallvpe /cl@T1@l are stable
against the resistive drift Alfve´n instability in the presence o
flow with strong shear. This instability is absent also f
times T1@lvpe / lc, where solutions of system~77!–~80!
@with omitted terms of the order ofO(l2)] are

Ai;

expS 2
neit

2 D
S v08t2

k

l D
2 ~D1cosdt1D2sindt!, ~85!

pe;expS 2
neit

2 D ~F1cosdt1F2sindt!, ~86!

pi;const, ~87!

f;
1

S v08t2
k

l D
2 ~G1coslvdit1G2sin lvdit!. ~88!

These solutions show that on the ultimate stage perturbat
of pressurespi ,e and potentialsf, Ai are stable and hav
different time dependencies.

The governing system of the equations for collisionle
plasma in the case of strong shear flow is determined by E
06640
-

r

ns

s
s.

~77!–~80! with Re50. In time periodl!T1!lvpe /cl, we
obtain the following solutions for perturbed potentials a
pressures

@Ai~t!,pe~t!#;
1

S v08t2
k'

l D 1/2 expF6 i
lrs

2
kivA

3S v08t2
k'

l D 2G , ~89!

pi'const, ~90!

f~t!;
1

S v08t2
k'

l D 3/2expF6 i
lrs

2
kivAS v08t2

k'

l D 2G ,
~91!

where the terms of the order ofO(l2) are omitted. Finally,
for timesT1.lvpe / lc we find, that on the ultimate stage th
evolution of perturbed potentials and electron pressure
turbation is similar with their evolution in the casepi50,

Ai;
1

t2
sin~kivTet!, ~92!

pe;sin~kivTet!, ~93!

pi'const, ~94!

f;
1

t2
@D sin~ lvdet!1E sin~kivTet!#. ~95!

The stabilized perturbations of the magnetic potential and
electron pressure will ultimately be transformed, as in
case of cold ions, into waves whose phase speed is the
tron thermal speedvTe rather than the Alfve´n speedvA .
These waves damp due to electron Landau damping and
the perturbation of the electrostatic potential with the f
quencylvdi will survive which, however, also damps slowl
like t22.
9-10
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V. CONCLUSIONS

An analytical theory of the temporal evolution of dri
Alfvén waves in an inhomogeneous plasma of low and fin
pressure with homogeneous shear flow is presented.
cases of plasma with cold and hot ions, weak and strong fl
shear are considered separately. It is shown that the con
tional modal structure of the stable and unstable drift a
Alfvén waves holds only for a limited time in the initia
stage. For larger times, these waves acquire a more com
cated nonmodal structure with time dependent frequen
and amplitudes and with different time dependence for p
turbation of potentialsAi , f and perturbation of pressure
pi , pe .

~1! We obtain that in low pressure plasmab!me /me with
cold ions the flow shear has fundamentally altered the mo
time behavior from the conventional to a powerlike tim
dependence of the spatial Fourier harmonic of the pertur
potentials. An algebraic decay is imposed with the magn
potential decaying more rapidly with time than the elect
static potential. This feature—the different time depende
of different perturbations in a linear system, is a strictly no
modal element introduced by the velocity shear.

~2! We find that for a plasma with finite pressu
(me /mi!b!1) and cold ions, the velocity shear reduces
effects of other inhomogeneities~pressure! on Alfvén waves,
and leads to an asymptotic behavior 1/t2 for the amplitudes
of both the electrostatic and magnetic potentials. In time,
shear flow also raises the Alfve´n wave frequency—
ultimately imparting it a phase speed~along the magnetic
field! approaching the electron thermal speed. Such a w
suffers strong electron Landau damping necessitating a
netic approach for a proper long time description. This she
induced temporal transformation~a joint effect of the shea
flow and the finite electron mass! to a highly damped mode
will provide a mechanism for the damping of perturbatio
which could, indeed, be growing without the flow shear.

~3! In plasma with hot ions hydrodynamic drift Alfve´n
and resistive drift Alfve´n instabilities may be developed. Fo
the regimes of low flow shear, which corresponds to the
on

on

er

.
.K

io

io
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riod of the low-to-high transition@3–5#, the nonmodal effects
may actually control the temporal evolution of instabilitie
on time scales less than their inverse growth rates. Howe
the long time evolution of these instabilities as well as th
saturation are determined by the nonlinear effects such as
nonlinear decorrelation effect. In contrast, the plasma w
strong flow shear, which corresponds to the regime of
developed transport barriers@5#, is stable against the deve
opment hydrodynamic drift Alfve´n and resistive drift Alfve´n
instabilities. For plasma with hot ions (Ti<Te) , the fre-
quency of the electron drift wave ultimately reduces to t
frequency of the ion drift wave,lvdi . The drift-wave trans-
formation into a convective cell with zero frequency and
amplitude decaying as 1/t2 seems to be an inherent proper
of the temporal evolution of the drift mode in a plasma w
cold ions (Ti50) @11#.

It is interesting to note that the analysis with longitudin
homogeneous shear flow withv0(x)5v08xb0, where v08 is
independent ofx, leads to equations identical to Eqs.~13!–
~16!, if one redefines the timeT and the parametersS and
Ce,i as

T5v08
kz

l
t2

k'

l
, S5

kzvA

v08
kz

l

, Ce,i5
lvde,di

v08
kz

l

. ~96!

Therefore, the solution of the initial value problem for th
longitudinal shear flow may be obtained from the results
the transversal case presented above by simply changinv08
to v08kz / l .
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