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The temporal evolution of drift Alfve waves in an inhomogeneous plasma of low and finite pressure with
homogeneous shear flow is studied as an initial value problem without the use of spectral expansion in time.
The cases of plasma with cold and hot ions, weak and strong flow shear are considered separately. It is shown
that the conventional modal structure of the stable and unstable drift anchAifaees holds only for a limited
time in the initial stage of its evolution. For larger times, nonmodal effects due to the velocity shear define the
development of drift Alfvea waves and drift Alfva instabilities. For the regimes of low flow shear, which
corresponds to the period of the low-to-high transition, the long time evolution of these instabilities as well as
their saturation are determined by the nonlinear effects such as the nonlinear decorrelation effect. In contrast,
the plasma with strong flow shear, which corresponds to the regime of the developed transport barriers, is
stable against the development hydrodynamic drift Aife@d resistive drift Alfve instabilities. The frequency
increase caused by the shear flow brings the Alfweave phase speed close to the electron thermal speed
where strong electron Landau damping occurs. At this stage, a kinetic approach for the description of these
waves becomes necessary.
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[. INTRODUCTION the plasma core, where the magnetic shear is the primary
determinant of the spatial structure and temporal evolution of
It is well recognized now that the short-wavelength drift- these waves. Unfortunately, the ballooning transform method
type waves are the source of anomalous transport in toroidaleases to be useful for problems that involve significant
confinement systems. There has been substantional theoreshear flow, and may be suitable only in finding the spectrum
cal progress in understanding the structure and stability ofand growth ratésin the limit of vanishing velocity shear
these waves in a sheared magnetic field. The conventionfif—10]. Other methods have to be developed for the analysis
theory of short-scale drift toroidal modes is based on theof a plasma with strong flow shear. In R¢L1] a new ap-
“ballooning transform” [1], perhaps, the most effective proach to the theory of drift waves in plasma with strongly
method for calculating the spectrum and global structure ogheared flowsl(,<Lg) was proposed. The character of fluc-
drift-ballooning modeg$2]. tuations for such a system is dominated by the sheared flow,
The experimental discovery of the transition from theand minor effects of magnetic shear can be safely omitted. In
low-confinement state to the high-confinement state, irRef.[11] the effects of the shear flow with a constant shear-
which the suppression of turbulence and reduction of anomang rate were worked out for low frequency driftlike pertur-
lous transport was detected, open a new page in the theory bhtions in a collisionalHasegawa-Wakatani model in a slab
drift wave and drift turbulence in toroidal confinement sys-as well as a collisionleséHasegawa-Mima modglplasma
tems. Experiments have shown that, together with the trarf-11]. It was shown that the shear flow has not only a stabi-
sition to the improved confinement statd-node regimg a  lizing effect on the resistive drift instability, but also leads to
tokamak plasma develops large variations in the radial elegarincipal changes in the structure of the basic drift wave.
tric field, and strong poloidal plasma shear fldBs-6]. The  Consequently the structural elements of the drift turbulence
large variations are also limited to the same small edge layeaind, thus, the correlation properties of the turbulence are
in which the velocity shear length, is found to be much bound to change. The solution of the relevant initial value
less than the magnetic shear length. In fact, the shearing problem[11] also reveals strong nonmodal features like time
rate in this region is of the order of, or even larger than, thedependent frequencies and wave numbers and nonseparable
typical drift wave frequency. It stands to reason, then, thaspatiotemporal behavior of the perturbatidi®2-17. The
the nature and evolution of the low frequency waves andtandard form for the modal structure of drift perturbations
instabilities in the edge layer will be different from that in exp(k,vqd), with vy, being the electron diamagnetic drift
velocity, survives in a shear flow for a limited time only.
With increasing time, this wave ultimately transforms into a
*Electronic mail address: mikhailenko@pem.kharkov.ua convective cell with zero frequency and an amplitude decay-
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ing as 112, It was also shown in Ref11], that the radial dF dd L Teo|
wave number of the drift wave grows secularly with time in=~ —— + e ge— + ———2| — + — [
shear flows(see also Refd.8,9]). Implying the onset of the dt dy  4me 19z Bo
associated nonlinear effects, this drives initially minor effect < V2R, =0
, . AT ; TA=0, (2
of the magnetic shear into greater insignificance. This ap-
proach proves to be useful also in the studies of temporal
evolution of electrostatic toroidal ion temperature gradient
driven instability[20] and Rayleigh-Tailor instability21] in
plasma with shear flow.
In our present paper we extend these studies by including
the electromagnetic waves and instabilities. We undertake,
what may be called, a nonmodéh time) investigation of

VAH Xbg]-V
dp; i
d—tl—eniovdiWZO, ©)

d, 2\
aﬂ)di@ 1o

the drift Alfvén wave in the presence of a sheared velocity c ~ ~ ~
field. The drift Alfven wave is considered to be an important = mvﬂ[boxvf)i] VIVL=V.(vi- V)V ¢
component of the low frequency plasma turbulence which

may be responsible for the anomalous transport in toroidal vi Jd 1 o~

confinement devices. Its structure and stability properties in S 5+B_O[VAHX bol-V VLA, (4)

the strongly sheared edge plasma of a tokamak will, perhaps,

bear cruciz_;\lly on our understgnding of the nature of theyith  being the electron plasma frequenoy, being the
H-mode. Since the edge layer is rather narrow, we employ @afvén velocity, I'=5/3 being the adiabatic constant and
slab model to study both a lown(/m;>pg) and_flnlte Uge(diy= + C/(€NeoBo)dPeg iy /dXx being the electror(ion)
(me/m;<B<1) pressure plasma, whepe=4mP/B? is the  giamagnetic velocityPeo(i0y(X) is the inhomogeneous equi-
ratio of thermal to magnetic pressure. Driven by the experijiprium electron (ion) pressure. The operata/dt in Egs.
ment, we also assume the velocity shear lengthto be  (1)—(4) is defined for a shear flow transverse to the magnetic
much less than the magnetic shear length In fact, the  fjg|g Bo=Bb, (directed along thez axis), with uniform

confining magnetic field will be considered to be shearlesgheaﬂng rates, i.@/o(X) = v gxe, , wherev, is independent of
and homogeneous. The temporal evolution of the spati%t, as

Fourier modes of perturbations is studied directly as an ini-

tial value problem; the standard spectral expansion is not

expected to reveal essential features of the temporal evolu- d _d 9 v 5
tion. In Sec. Il the basic equations governing the temporal dt EJFUOXWMIE’ ®
evolution of drift Alfven waves in a plasma with homoge-

neous shear flowconstant shearing rateare derived. In  \with ve=(c/B)[byX V ¢].

Secs. lll and IV, the initial value problem is approximately  The conventional way to resolve this system of equations
solved to chart out the time history of the mode: in thegr their particular forms is to assume the perturbed quantities
former the plasma has cold ion-Ei,<Te, while in the latter vary as @H ,¢,pe,pi)w[A”(X),¢(X),pe(x),pi(x)]equkyy

the electron and ion temperatures are comparaQie,Te,  +ik,z—iwt). It is known, however[see, for example, Ref.
whereT; andT, are the respective the ion and electron tem-24])] that for the case of shear flow the solutions of such
peratures. modal form do not give the complete solution to the problem

and more rigorous in this case will be the solution of the
initial value problem for the system considered. The applica-
tion of the direct and inverse Laplace transform in time for-

The governing equations of the present model are thanally completg the §o|u§ion of the initial value probl¢ad]. .
equations for the longitudinal motion of electrons, for the Ihe Laplace inversion integrals, however, appear to be in-

quasineutrality of the current density, and for the perturbayolved for the com_putation of t_ime evolut_ion for finite time
tions of the electron pressife and ion pressurg; . In the values. As a rule this method gives analytical results only for
i

. T . an asymptotically large times. These asymptotic results may
?;;Eﬁﬁgg;g:;ofg’r ttuz ;ﬁ:ﬁlg gcf)rﬁggﬁgﬁ?Zfrfhdeuggfufbtez(ﬁecome useless in the comparative anaIyS|s of the rglatyve
; S ! T importance of nonlinear and linear effects in the evolution in
magnetic potentiah, the electrostatic potentiah, and for  time of the plasma instability in shear flow, because all tem-
pe andp; [22], poral processes in time evolution, which in some definite
_ time may be more important than the modal or the nonlinear
A ones, are omitted. Therefore it is unlikely to receive on this
+UdEW way analytical solutions valid for any finite time and to ana-
lyze with them the temporal evolution of drift Alfvewaves
Jp c Jpe c _ _ or stabilization of the drift Alfve instabilities. _ _
=—CE+e E+ onB VA [byXVpe], Here we have useq another approach, WhICh gives easy
Meo NeoBo and transparent treating of the problem considered. It is
(1)  known that with such homogeneous shear flows, the solution

II. BASIC EQUATIONS

97~ v
at| A1 2, VA
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of the initial value problem is greatly facilitated by a trans- 5((1+T?)¢)
formation to coordinates which are convected with the ——=——
sheared flow. Such a transformation is giveri bjj (see also

Refs.[12-19)
=t, =X, p=y—vixt, {=z (6)

In the new coordinates the linearized systé€in-(4) for the
nondimensional variablesp=ed/T,, Aj=eAleTs, pe

:Be/nOeTe’ Pi :Ei IngeTe becomes
G AL YN T TR L 7
gr\ F2)eLH Ude&n_ Cé,g C&éu, (7
9Pe ip v a _,
ar vdeﬁ 2 ¢ ﬁ_gviA”:O’ (8)
P 9
197' dlan 01 (9)
J d ap ap v,i p
2 [ i
a7y )V“ﬁ Y07y (aé oo an) A A
(10)
where the operaton is
#? P P | 2
Vi=—+t—=—; ( —vT— 11
1 ax2 ayz 577 ag 0 an ( )

The new coordinates were designed to transfer the spatial
dependence to the time domain. The preceding spatially ho-
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HICH(L+T2) == Tp— 1 21+ T)A
(16)

aT

In systems(13)—(16), ps=v/w,; is the ion-sound Larmor
radius,v = (I'.To/m;) *?is the ion-sound velocity 1, is the

electron thermal velocity, angl, is the Alfven velocity. The

dimensionless timd and the dimensionless paramet&s
C., andC; are defined as

k kv 1V ge i
T=vyr— l—L S=-2 ,A, Cei= d?'dl ) (17
Uo Uo

Systemg13)—(16) together with the Fourier transformed ini-
tial data Aj(0k,,l,K,), pe(0Kk,,l,ky), pi(0Kk;,lk;), and
#(0k, ,1,k,) constitutes the general initial value problem. In
the following, the temporal evolution of the drift Alfve
waves in a plasma with cold ion3{<T,) and with hot ions
(T;<T,) in the case of “weak” flow shear, whe8>1, is
considered.

Ill. TEMPORAL EVOLUTION OF ALFVE N WAVES
IN A PLASMA WITH COLD IONS

This section is devoted to a study of Alivevaves in a
homogeneous as well as an inhomogeneouslocal ap-
proximation plasma with cold ions,T;—0, for a broad
range of electron pressure with=4wP/B? (the ratio of
thermal to magnetic pressurespanning the ranges3
<m¢/m; and > B>mg/m; .

A. Temporal evolution of Alfvén waves in a homogeneous low
pressure plasma(f<m./m;)

mogenous system may be Fourier analyzed in the new spatial FOr 8<me/me, i.e., with bothP;;—0 andP¢—0, the

variables¢, », { as

Ak k= [ | [ dedndeaeno

xexp—ik, il p—ik,Z},  (12)

taking into account the condition that L,.;>1, where

system of equatlonSLIB) (16) reduces to

d?((1+T2 vie 1

d@+T4) +——— $=0. (18)
dT? va 1%p2

The solution to Eq(18) has a modal form with frequency

Q=Kkjpre/lps for T<1. For larger timesr>1, it may be

approximately solved for the electrostatic and magnetic po-

Lpei is the scale length of the inhomogeneous equilibriumientials,

electron(ion) pressure, to obtain the following system for the

evolution of the spatial Fourier harmoniés, ¢, pe, and
Pi

9 212
s 1+—(1+T2) A +|CeA||——|—S¢>+|—Spe,
pe
(13
p c vf
€ —iT— Tegp 2
0T +iCe¢ IFUA wgeSI (L+THA, (14
Ipi
—7=iCi¢, (15

1
P~ SIZ(ClT'w1+C T o), (19

ic 1 C,
kHvi T5/2 % +iw1

. C, _ .
T|0)1+ T le ,

AT~ 3 —iw
2 1

(20
where w,=Q?/(v{)?—1/4. It follows from Egs.(19) and

(20) that the flow shear has fundamentally altered the modal
time behavior from the conventional to a powerlike time
dependence of the spatial Fourier harmonic of the perturbed
potentials. An algebraic decay is imposed with the magnetic
potential decaying more rapidly with time than the electro-
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static potential. This feature—the different time dependence 9 1 c212\ 4
of different perturbations in a linear system, is strictly a non- T >t — o (1+T?)¢]
modal element introduced by the velocity shear. IT 147 pel 0

B. Temporal evolution of Alfvén waves in a finite pressure
plasma (B=>m./m;) with cold ions

For cold ions,T;— 0, but for the finite electron pressure

the appropriately approximated systgii®)—(16) may be

combined into a single third order differential equation for

(b(Tvkl YI!kZ)y
(9_2 1 +ﬁ i 1+ T2
JT2 [\ 1+T?  wl, ol )#]

+Sz%[(1+|2p§(1+T2))<;/>]+iCeSZ¢

d

+iceﬁ|ﬁﬁ[(1+ﬂ)¢]]=o. (21)

Equation(21), together with the initial conditions obtained

with Egs. (13)—(16),

(T kLK) [r=—k, n=(0), (22
d Ik, .Ua
- =kval g 5——5¢(0)—i—AI(0)], (23
Jr T=—k, /I SISk 412 ¢
P
T2 =kZvape(0) +kZva
d T=—k, /I
8 (k)2 2 1?2 5(0)
S (K2 +12)2 2 124K?
loa, s oKy
_é?kzvl_\ C'|‘2I2—2 AH(O)‘ (29
L

constitutes the initial value problem for the linear drift and
Alfvén waves in a plasma shear flow with cold ions. In the
limit of weak flow shear, i.e.$>1, the initial value problem

may be formally solved in the eikonal approximation

1 T ! !
P(T)= 1+T2exr{ SJ, ki”dT f(T )), (25
where
B 1 1
f(T)="1o(T)+ gfl(T)wL gfz(T)Jr cee (26)

+SH[1+1%p2(1+T?) ]} ¢
=S p2(12+k?) $(0) + pe(0)]. 27)

' Notice that the integrability implies the existence of a con-

stant of the motion which lowers the effective dimensionality
of the system; in this from three to two. F&>1, the
asymptotic solution for the homogeneous equati@T)
could be easily written in terms of elliptic integrals. We shall,
however, avoid that rather opaque representation, and write
approximate but simpler forms relevant to different but well-
defined intervals of the normalized time We find that
Alfvén waves in their “classical” modal forngwith thermal
corrections,

b1 AT ~exp{zikjpar 1+ (kI +12)p214%, (28

will exist only within the time interval 8<7<(v¢) *(|T|
<1), i.e., for physical times less than the inverse of the
shearing rate. In the next well-defined time interval

1<T<(lpg) 4, (29

the Alfven waves begin to acquire the nonmodal slow-decay
imposed on a modal form,

1
(1)1’2"’ TGXF(ilST) (30)

This mixture of the modal and nonmodal behavior continues
in the interval

- _1VT1
(Ips) " t<T<(lpy) 1—, (3)
UA
in which the solution

S
¢1,2~T3’2exp( il psT? (32

is characterized by a “frequency” increasing linearly with
time. Finally, for asymptotic time&or times larger than the
various “times” in the problemy

U
T>(lpg) 1=, (33
Ua

the solution

UTe

(34)

¢1,2~T‘2ex;{ +iST
Ua

corresponds to an algebraically decaying but oscillating
mode. In the ultimate stage, the wave that began as an ordi-

From this general solution we will first extract the wave- nary Alfven wave ends up propagating with the electron ther-

forms pertinent to the homogeneous plasn@a=€0), and
then the drift waves in an inhomogeneous plasi@ga#0).
If C.=0 (homogeneous plasmahe mode equatiof1)

mal speed .. This metamorphosis is due to the finite elec-
tron mass effect which is usually omitted in the study of
Alfvén waves in a plasma with finite pressuggs>mg/m; .

may be integrated once to obtain the inhomogeneous diffefFhrough the agency of the shear which transfers energy be-

ential equation

tween different wave numbe( particular induces upward
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cascading this normally neglected term becomes dominantultimatelyv 4,=v4,=0 andvy,=vt.; the packet propagates
for large enough times when the effective wave numberstrictly along the magnetic field.
become large. Since the waves propagating with the the elec- The particular solution of inhomogeneous equaii@n),
tron thermal speed will be subject to strong electron Landau 2,12 12
damping, the flow shear may become a rather effective _r (KL 17 $(0) +pe(0)
mechanism for damping the Alfweor drift Alfvén waves in 1+ p 17+ (k, —vgl 7)?]
the shear layer of the high-confinement tokamak discharges;
the shear connects the wagehich may be growingto the  is of the type obtained for a convective cell or a vortex
highly damped part of the spectrum causing it to uItimater[11'25,23; it is also the solution for the ultimate stage of the
decay. Needless to say that for these conditions a kinetigvolution of the drift wave[11]. Taking into account the
description for the Alfva wave evolution becomes neces- initial conditions(22) and(23), we write down the complete
sary. solution for the potentialp,

In the space-time coordinatés 7, t, solutions(28)—(34) H(7)=C11(7)+Corpo(7) + ¢, (7), (40)
have the form

(39

*

where the constaniS, , are calculated to be

=S LS| *
t,€,m,2)= dk, [ dI | dk,®4 otk ,1,k;) 2\ -2 _
$1At,€,1,2) (27 9 Ptk 1k, C\m 1+% (14 p217+1)] 4 ¢(02) 2pe(cz)) :
 @iké+il ptikzgiT etk ky) (35) I [1+ps(17+kD)]
. s .UA 1 IkL
whered, (t,k, ,I,k;) contains the initial data, and the non- Fi —AH(O)ié > ¢(0)
exponential dependence of these solutions. For a wave ¢ 1“+kT
packet peaked about a central wave numbkg 2 2,42, 1.2
=(k, 9,l0,k,) the components of the group velocity in the _ Ik, pslps(17+KD) ¢(0) +pe(0)] (41)
comoving frame are equal {d1] [1+p2(12+Kk?)]? '
d[dl.
Vgx= T ¢ W‘) , In deriving C,,, small terms of the ordernﬁe/mi)(kf
LKk 0oy +I2)p§/,8 have been omitted. Thus, in a homogeneous
91 aT 9 (T plasma the perturbation spectrum consists of two Alfve
Vgy=— _<_i) , Vgm— _(_i) waves, determined by Eq&8)—(34), and a convective cell
at\ dl K oo ko at\ dk, K oo ko (39). The temporal evolution of the electron pressure pertur-

(36) bation p, is obtained from Eqs(13) and (16),

2112 "2 212 1.2
It follows from the solution that the “classical” pattern for Pe(7) == psl (174 (k. —vol 7)71p(7) + ps(1°+ kD) (0)
the propagation of an Alfwe wave packet with the group +po(0), (42)
velocity

which grows asT in the time interval(29), like TY? in the

2 2
Vo= ;vAﬂ KoL ps time interval(31), and stays constant for larger times. From
o Koi (14 (K3, +13)p2)+2 Egs.(39) and(42), we may also learn that the electron pres-
- sure perturbation connected with the convective egll( 7),
_ ko 1ops may be no larger tha®(S ?).
Ugy™ +Ua lo (1+(K2, +12)p)12’ From Eq.(16), we find that the magnetic potentia,
) o o1 associated with the Alfvewaves is given by
=Fva(l+ (k5 +I ! 3
vg=Fva(l+ (kg +15)pg) ™% (37) R __£¢ - 111221+ T2) 172
will be found only within times 6<7<(v()~ *(or |T|<1). la2= =, P02 v, , ,
In the time intervak29), vy,=va andvg,=v4,=0, i.e., the 1+ —1%p5(1+T9)
wave packet does not propagate across the magnetic field. UTe
For times(31), we have +0(S), (43)
k .
Ugx= U aKgPs» Ugy:IUA&kollpS, which, for the successive intervals enumerated earlier, be-
0 comes in Eq(29),
_ . koo 1 .
Ugz™ Fualops vOt_T ) (38 A||(1,2)~ - ?exp(i iIST), (44)

revealing that in this interval, the component of the groupin Eq. (31

velocity directed along the velocity inhomogeneity,, is in 1 S

a direction opposite to the initidB7), i.e., after a period of Ajray— —exp( +iZlp Tz), (45)
blocking, the packet is reflected i In times(33) we have (2~ g1z 27
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and in interval(33) P ? 12¢2\ g T%
|55 [ e
AH(l 2~ —exy{ * IST—Te (46) T2
oA + 14 p22) 14 = [H(Ty)
pS 82 ¢ 1
For the convective cell, the magnetic potential is = p3(k +12) $(0) + pe(0). (48)

212 2,2 12 For T, finite andS—0, i.e., forT>S"!, one obtains from
A (T)=2i < psl”_ps(ki ¥ )d’(OHpS(O)_ (47)  EQ.(48) solutions(34) for Alfvén waves, and solutiofB9)
va S [1+12p2(1+T?)]? for the convective cell.

—1 _3 C. Inhomogeneous plasma with cold ions
It grows asT whenT<(lps) ", and decays strongly as ] . ] ]
for T>(Ipy) L. It is interesting to note that in this case of N this section, asymptotic solutions for weak she8r (

finite pressure plasma, as well as in the case of low pressurél) of Eq.(21) are derived separately for the weak>C
plasma, the velocity shear introduces different nonmodai~1). and strong §~C>1) plasma inhomogeneities.
time dependence for different perturbations.

The reader may note that the asymptotic solutions of Eqg.
(27) for extremely strong sheag<1, are readily obtained After substitution of Eq(25) with Eq. (26) into Eq.(21),
by the transformation of Eq27) to the “slow” time variable  the three solutions of the inhomogeneous plamsa may be

1. Weak plasma inhomogeneity

T,=ST. With T, as the time variable, E¢27) becomes written as
1 T 1+12p2(1+772) | 2
T)= ex tiSf dar’
#14T) c?l? T e c?l?
(L+THYALHIZpS(L+ T2V 1+ —(1+T?) 1+ —(1+T'%)
wpe wpe
cl
. —T
iC 1 1( lpsT' ) 1 | e
+—| ———tan - tan | ———— , (49
2| 1psyV1+12p2 V1+12p2 v2 2|2 2|2
IPST 1+ —2 1+ —2
UTe Wpe Wpe
|
and (50) the terms in the exponentials connected with the plasma

1+ p2(12+K?) inhomogeneity are proportional to the tanfunction. Thus,
s L the dependence on plasma density inhomogeneity becomes
1+|2p§(1+-|-2) negligible after some time, and asymptotically the Ative
waves in the weakly inhomogeneous plasma will have the
( IpT ) same form as their homogeneous countergdf) with
tan”

C
xexpl —j — L somewhat modified coefficientdetermined by initial condi-
|ps\/1+|2p§ \/1+|2p§

tions (22)—(24)]. The quenching of the inhomogeniety ef-
] wave numbers which renders the weakly inhomogeneos

h3(T)=

K, ps
V1+12p2
Ps 2. Strong plasma inhomogeneity

with Eq (49) describing the Alf\,/e wave modified by the In this case, the functioﬁO(T) in Eq (26) is found from
plasma inhomogeneity, and EO) representing the elec- the equation

tron drift wave in the presence of the flow1]. From Eq.
(50) (see also Ref[11]) one observes that because of the
shear flow, the drift wave is ultimately transformed into a
convective cell. It is interesting to note that in E¢49) and

fects is due to the shear-induced increase in the effective
+tan1< (50 plasma virtually homogenous for the higgtperturbations.

2
C
(f3+1)(fo+io)= —(1+T2)|2p§f0( 1+—— f5(T)

2
wpeps

) (51
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where §=C/S. In the limitv(=0 andm,=0, Eq.(51) re-

duces to the well-known dispersion equation coupling the
drift and Alfven waves in an inhomogeneous plasma without
shear flow(see, e.g., Refl26]). In the presence of a shear

PHYSICAL REVIEW E 66, 066409 (2002

2
.UTe Wpe

: 2
i 5wpe I
2T%¢?1? va 2T2c?|?

foz,oz* -

| e

and one concludes that for strong plasma inhomogeneities,

flow, however, Eq(51) contains an important time depen- {he drift wave perturbation as well as the effects of the inho-
plasma perturbations. Equati¢hl) has no simple solutions |ong time limit, the temporal evolution of the initial distur-
and this is also true for the much more complicated equatiobance will be governed by an equation similar to E4p),

for f{, the next function in the eikonal expansion.

For |T|<1, the solutions of Eq(51) are similar to that

and therefore the drift Alfve wave structure would have
transformed into a convective cell and a strongly damped

obtained for a plasma without shear flows. But for larger(due to electron Landau dampinglfvén wave.

time T, the shear flow will modify the solutions substantially.

Writing Eq. (51) in the form

fo| f5+idfot+1+12p2(1+T2)

c?l?
+ - (L+THIYT) |= i85, (52)
Wpe
one finds forT>1, the first solution
—id
for (53

1412021+ T2

which corresponds to the drift wave. For time inter(@d),
the equation

f2+i8fo+12p2T%2=0 (54)
may be approximately solved for the two solutions
[
fozoq~ = 5 (0467 +41%pT?). (55)

These solutions are the Alfaavaves modified by the plasma

inhomogeneity. For even larger tim&s Eq. (33), the ap-
proximate solutions of Eq51) are

IV. TEMPORAL EVOLUTION OF DRIFT ALFVE N
INSTABILITIES IN A PLASMA WITH HOT IONS

Now we consider plasma with hot iod$<T,. It is well
known that in shearless case inhomogeneous plasma with hot
ions is unstable against the hydrodynamic drift Aviesta-
bility [26]. Here we consider the effect of flow shear on the
temporal evolution of that instability in the regime of weak
flow shear, which corresponds to the stage of the period of
the low-to-high (-H) transition, and in the regime of strong
flow shear, which corresponds to the stage of the developed
transport barriers. For that goal we have to consider full sys-
tem of equation$13)—(16). It is suitable now to present this
system of equations into matrix form and to introduce new
variablesU and¥ , by the relations

c?l?
1+ —(1+T%)

(J)pe

U=(14+T%¢, W= A (57)

We consider the regimes of weak flow shear, for wh&h
>1, S/IC,=0(1), andS/C;=0(1) and strong flow shear,
for which S<1, S/IC,=0(1) andS/C;=0(1), separately.
Introducing a parametex by the formal change&—A\S,
Ce—ACq, C;—\C;, Egs.(13—(16) may be rewritten for-
mally as

dq
—+F(T,\)g=0,

aT (58)

whereq=(WV,pe,p;,U) is a column 4-vector and the matrix
F(T,\) is equal to

iNC,
) C ) c 1
22 ) —iNS— 0 iAS—
1+ —(1+T?) va VA 1+T?
Wpe
c ve 12(1+72)
o e
VA w2 c?l? 0 iaC
e 1+ (1+T?) “1+T12
F()\yt): U)pe
0 0 0 —iINCi——
1+T2
_UA)\S 1+T2
'C 2|2 T inC,
1+ —(1+T?)
w

pe
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Clearly, the regimes of weak and strong flow shear corre- SI2p2(1+T2)
spond to large and small values of the paramgterespec- f2(T)+ > [fo(T)+iC;]
tively. mel,, 2
) ) _ 1+ [“ps(1+T7)
Solution of Eq.(58) in the case of weak flow shear is m; B8

looked for in the WKB form

_ Sfo(M) +iCel+iCefo(T)[fo(T) +iCi]

q(T,A)=a(T)exu(xf f(T,x)dT), (59 1+%%|2p§(1+T2)

where a(T) is a column vector, and f(T,\) (65)

=Z=ofi(T)A"". For fo(T) one can ob_tain one rodp(T) ._The right term in Eq(65) may be considered for large times,
=0, and other three roots are determined from the equatiofts. 1 “as a small. Without the fight term we have three un-

led solutions t f which
(f2(T) +iCifo(T) + S (Fo(T) +iCo) coupled solutions two of whic

me 1 . 1+72 1
=—{f§(T)H—+s2 (1L+T2)12p2(fo(T) +iC)), fo1,07= *=1Slps 1 (66)
P 1+ —2 Z12p2(14T?)

(60) m; 8

may be attributed to shear flow transformed Atliveaves,

; n212) 2 i 22
where the identityc”l“/ wye= (me/m;) (1/B8)1“ps was used. and the third solution

Forlps<1 in timesT<1 the right-hand side of Eq60) is

small. Omitting the right term we have far<1 solutions fos(T)= —iC, 67)
2 1/2
fo1 05=1 H + & 4 : (61) is associated with the electron drift wave transformed by the
’ 2 4 ' shear flow. We remind the reader that f6y=0, solution
) (67) corresponds to the zero frequency convective [cll.
which define two Alfve waves and solution With crossing conditiorf 5, = f o3 of wave brunches, which in
shearless case gives growth r&é3), we find for fy="fy;
foz=—iCe, (62 + 5, that
which defines the electron drift wave. The accounting for the S(Ce+|Ci])
right term gives the hydrodynamic drift Alfveinstability. Sfo= =i e 74 -
The maximal growth rate will be for oscillations in the vi- V2lp(1+THY4 14+ = 2 12p2(14T2)
cinity of the crossing of the solutiorfg, andfy; and is equal m g
to (for T,=T,) [26] (68)

5 m 1 112 One can see that in this stage of evolution, there is no drift
y= \ﬁ lvgel Ps(1+T2)1’2<_e Z_ 2) . (63 Alfvén instability. This result show that in timé&>T, shear
3 m; B flow leads to the changing the frequency of the waves and as
a result to the violating their coupling. However, this result is

In times T=1 the time dependence of tlhe growth rate mathematical artifact, because for tinies T, we have[27]
becomes important. Because for time(v() ~ we have

| (Ve L ( Me 2)1/2>1 (69)
m ' - Z 1

r_ Ude)|p5‘/_e, (64) 4 vy lps\miB

vy \ v m; 3

and prior to the development this effect the nonlinear effects

the long waves with ps<(v{/lvge) (M;B/Me) in times less  similar to nonlinear decorrelation effect will suppress this
than the inverse modal growth rate begin to grow with non-nonmodal instability.
modal growth rat€63) which is linearly growing with time. It is followed from Eg.(63) that the hydrodynamic drift
It is obvious that for these waves the conventional estimatélfven instability is excited in lows plasmas with 3
for the suppression of the instability due to the nonlinear<m./2m;. In higher 8 plasma the resistive drift Alfwein-
decorrelation effecf5], y~vg, with modal growth ratey, stability [26] is possible. That instability is the electromag-
have to be modified. netic counterpart of the electrostatic dissipative drift instabil-

In times T>T,=(1/p)(mB/m,)Y2 the right term in ity, temporal evolution of which in plasama with shear flow
Eg. (60) is no longer small and conventional procedure,was considered in Refll]. The relevant system of equa-
which gives the drift Alfve instability with growth ratg63)  tions for this instability will be the systemd3)—(16) with
is no more valid. For these times it is suitable to rewrite Eqnew term v;(c??/ w5,)(1+T%)A; added to the left-hand
(60) in the form side of Eq.(13). This term is responsible for the collisional

066409-8
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dissipation of longitudinal motion of electrons. With the ac-
counting for this term the equation fég(T) takes the form

PHYSICAL REVIEW E 66, 066409 (2002

12p2(1+T?)

m
2+ fo(T)Re—e)

2 m; 8 .
fo(T)+ —] (fo(T)+iCy)
€ 2
(F3(T)+iCifo(T)+ S (fo(T) +iCo) 1+EE|2pS(l+T2)
—_ fg(T)Ei_FfO(T)Re% e __Sz(fo(T)+iCe)+iCefO(T)(f0(T)+iCi). 73
m; B m; B 1+%£|2 .
X(1+T2)12p2(fo(T) +iCy), (70 m B Pl

where dimensionless parameRy= v,;/v{— AR was used.
Forlps<1 in timesT< 1/l p4 the right-hand side of Eq70)

is small. The maximal growth rate for resistive drift Alfve
instability will be for oscillations in the vicinity of the cross-
ing of the solutiond 5, andf 3 determined by Eqg61) and
(62). This growth rate is equal to

Omitting the right-hand side term in E(Z3) for large times,
T>1, as a small we have three uncoupled solutions two of
which,

) 1/2

correspond to the linearly damped solutions and the third

2
e

4

,MiB
me

Re
forodT)=— 5= ( (74)

1 me (1+T?)2 solution fo5(T) is defined by Eq(62). It is obvious that on
7’%%”eilpsm.ﬁ m. | 72 (7)) these times the resistive drift Alfveinstability is absent.
' ( - —e) However, the time3 =1/ pg appear to be much more longer
mB than the inverse growth rate time. For that time we have
; P ; , estimates
in the case of low collisionality #.;<lv4e) and
pr>rei L Me Lo o1 75
1 m, | 12 y(t) T ipemB ] m | (75
y=~—=I| psteillvge =5 (1+T2)1/2 (72 vo -
J3 m;B m; 8
in the case of strong collisionality(;>lv4e). As in the case in low collisional case and
of the hydrodynamic drift Alfve instability, in timesT=1 1o 2
the time dependence of growth rat@4d) and(72) becomes (t)t>(Vei|Ude) Me o1 76)
important. It results in the nonmodal evolution of waves. The Y vilps  \MiB

waves withl ps<(v ¢/ ve;) (M; B/me) in the low collision case
and waves with ps<[v{/ (veilvge) Y2](m; B/m,) in the case
of strong collisions will grow in time with linearly growing
with time growth ratg63). It is obvious that for these waves

in strong collisional case.
The above analysis shows that nonlinear decorrelation ef-
fect is responsible for the suppression of both drift Affve

the conventional estimate for the suppression of the instabilinstabilities in the period of the-H transition.

ity due to the nonlinear decorrelation eff¢6{ y~v, with
modal growth ratey also must be modified to account for the
nonmodal effects.

For timesT= 1/l p, the right-hand sides in E¢70) are not

For the solution of system&l3)—(16) in the regime of
strong flow shear which corresponds to the stage of the de-
veloped transport barrief$], it is suitable to introduce new
dimensionless tim&@,;=AT. With new time the system of

a small and above procedure is no more applicable. For thatquations(58) with accounted collisional dissipation takes

times it is more suitable to present E@0) in the form the form
|
T
1+ —= |V (Ty)
v W(T,) 2 ( A2 ' Leum e -
— +i i— —i—Sp=0,
e e A T e T s
1"1‘—2 l+—2 1+—2 1-‘1——2 N
Whe Wpe A
Ti)
1+ —|W(Ty)
e, VT vrecl? 1T N7 o -
T, ¢ T2 cua wge‘J 22 T2 :
A Wpe
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d U(T
B i, 2T, (79
&Tl T%
1+ —
)\2
- va, (L+THW(TY) T,
(9—_'_14‘ICiU(T1)+I?\J 22 Ti +Tpi—0. (80
I+ —| 1+
2
Wpe

In time interval N wpe/cl>T;>\ with the accuracy to the (77)—(80) with R,=0. In time period\ <T;<Awp/cl, we

terms of the order oD(\?) the solutions of systeni77)—  obtain the following solutions for perturbed potentials and
(80) are pressures
2|2 k 3 1 |
A||(T)’~VeXD(—w—3 (067’_ |) ) (81 [A(7),pe(7)]~ —k/zeXF{—'_kUA
UoT_ I )
.UTe k”UA C|2 ( , k)3
T)~—i— ——ex vor— | |, k
( ) Cu A Vel % 3U0 0 I X UOT_ I_L) 1 (89)
(82)
pi(7)~const, (83 pi~const, (90
HUA C2|2 Vei , k 8 1 | kJ_ 2
¢(r)~|——ex —— —|vir— 7| |. (89 ¢(7)~ ——————3pex _I—k”vA VT ,
Veij w? 306 I K, T
pe UoT_ |
It follows from these nonmodal solutions that any distur- (92

bances in the time intervakwye/cI>T,>\ are stable

against the resistive drift Alfweinstability in the presence of \yhere the terms of the order Gf(\?) are omitted. Finally,
flow with strong shear. This instability is absent also forfor timesT, >\ w/Ic we find, that on the ultimate stage the
times T;>\wpe/Ic, where solutions of systerfi77)—(80)  evolution of perturbed potentials and electron pressure per-

[with omitted terms of the order d(\?)] are turbation is similar with their evolution in the cage=0,
VeiT
A2 A~ Ssin(kipo7) 92)
A= 7 (D1cosor+Dosingr), (89 I 2 e Te T
o]
Pe~sin(kjyrer), (93
VeiT .
Pe~exp ——— (F1c0887+F,sinédT), (86) p;~const, (94)
pi~const, (87) 1 , _
(,{)’V;[D SII’](lUdeT)+ESIn(k||UTeT)]. (95
1
¢~ ——5(GcoslvgiT+Gysinlvgit). (89 )
, Kk The stabilized perturbations of the magnetic potential and the
U07'_ T . . .
I electron pressure will ultimately be transformed, as in the

case of cold ions, into waves whose phase speed is the elec-

These solutions show that on the ultimate stage perturbatiorieon thermal speed . rather than the Alfve speedv, .

of pressures; . and potentialsp, A, are stable and have These waves damp due to electron Landau damping and only

different time dependencies. the perturbation of the electrostatic potential with the fre-
The governing system of the equations for collisionlessquencylv 4; will survive which, however, also damps slowly

plasma in the case of strong shear flow is determined by Eqéike 7~ 2.
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V. CONCLUSIONS riod of the low-to-high transitiofi3—5|, the nonmodal effects
may actually control the temporal evolution of instabilities

Alfcgn?/\?:\l/}gécﬁr: ;?ﬁz%r?]gtgi;g?g}”{;iﬂ?;ﬂﬁfﬁ :r: ddfrilr]:t on time scales less than their inverse growth rates. However,
9 P She long time evolution of these instabilities as well as their

E;izzu(r)? m;%guﬂﬁ%eo?sgﬁ ﬁgte% rnélov\cve;i g;zs;?:)er]d. ﬂ-g%eaturation are determined by the nonlinear effects such as the
P : Y 9 O onlinear decorrelation effect. In contrast, the plasma with
shear are considered separately. It is shown that the conven-

tional modal structure of the stable and unstable drift an trong flow shear, which corresponds to the regime of the
Alfvén waves holds only for a limited time in the initial eveloped transport barriefS], is stable against the devel-

stage. For larger times, these waves acquire a more compﬁ)prnent hydrodynamic drift Alfve and resistive drift Alfve

cated nonmodal structure with time dependent frequencie'QStab'“t'eS' For plasma with hot ionsT(<Te) , the fre

and amplitudes and with different time dependence for pe Qquency of the electron drift wave ultimately reduces to the

rz : . .

turbation of potential#|, ¢ and perturbation of pressures freque_ncy_of the ion drn"g Wan’vdi.' The drift-wave trans-

0. p formation into a convective cell with zero frequency and an
i» Me-

(1) We obtain that in low pressure plasigaem, /m, with amplitude decaying astf/seems to be an inherent property

cold ions the flow shear has fundamentally altered the mode@(f)ltg?ot:;ngia(l))eE/ﬂamon of the drift mode in a plasma with
time behavior from the conventional to a powerlike time L - ' L N
dependence of the spatial Fourier harmonic of the perturbe, Itis interesting to note tha_t the analysis with Iongltu_dlnal
p p p _ ,
potentials. An algebraic decay is imposed with the magnetigomogeneous shear flow me.(x)_.vOXb.o' wherev, is
potential decaying more rapidly with time than the eIectro—mdeF’.endent ok, I.eads to e'quatlons identical to Eq3.3)-
static potential. This feature—the different time dependenc 16), if one redefines the tim& and the parameterS and
of different perturbations in a linear system, is a strictly non--&i as
modal element introduced by the velocity shear.
(20 We find that for a plasma with finite pressure T=v[)&r— k_L S= Kzv A Ceizlvdeydi_ (96)
(mg/m;<<B<<1) and cold ions, the velocity shear reduces the '
effects of other inhomogeneiti€pressurgon Alfven waves,
and leads to an asymptotic behaviot?1for the amplitudes
of both the electrostatic and magnetic potentials. In time, th& herefore, the solution of the initial value problem for the
shear flow also raises the Alfwe wave frequency— longitudinal shear flow may be obtained from the results for
ultimately imparting it a phase speddlong the magnetic the transversal case presented above by simply changing
field) approaching the electron thermal speed. Such a wavg vk, /1.
suffers strong electron Landau damping necessitating a ki-
netic approach for a proper long time description. This shear-
induced temporal transformatiga joint effect of the shear
flow and the finite electron mast a highly damped mode This work has been carried out within the Association
will provide a mechanism for the damping of perturbationsEURATOM-OEAW. V.S.M. gratefully acknowledges the
which could, indeed, be growing without the flow shear.  hospitality of the Institut fuTheoretische Physik, Graz, Aus-
(3) In plasma with hot ions hydrodynamic drift Alfme tria and Abdus Salam International Center for Theoretical
and resistive drift Alfve instabilities may be developed. For Physics, Trieste, Italy. V.S.M. also wishes to thank Professor
the regimes of low flow shear, which corresponds to the peB. Scott for helpful discussions.
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