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The computation of the gradient of the magnetic surface function, ��, plays an essential role in
plasma physics, e.g., for investigations of plasma equilibrium currents or transport fluxes in
stellarators. The evaluation of �� becomes more complicated if the magnetic field B does not
exhibit stellarator symmetry. Here, a scheme for computation of �� for magnetic configurations
which do not show stellarator symmetry is presented. The proposed method is based on
computations of gradients of integrals of magnetic field line equations. This new technique for ��
calculations is applied to Uragan-2M �O. S. Pavlichenko for the U-2M group, Plasma Phys.
Controlled Fusion 35, B223 �1993��. Taking into account the influence of current feeds and
detachable joints of the helical winding the magnetic configuration does not exhibit stellarator
symmetry. Computations of ��, the effective ripple �eff, and the geometrical factor �b for the
bootstrap current in the 1 /� transport regime are performed. © 2010 American Institute of Physics.
�doi:10.1063/1.3396366�

I. INTRODUCTION

For theoretical and numerical studies of various ques-
tions related to plasma confinement in toroidal systems it is
necessary to calculate the gradient of the magnetic surface
�flux surface� function,1–5 ��. In a toroidal plasma the equi-
librium currents, transport fluxes and other quantities are ex-
pressed trough this gradient. For calculation of �� for the
realistic magnetic field, B, of a toroidal device given in real-
space coordinates numerical methods are necessary if the
magnetic field does not exhibit any kind of symmetry and if
there is no simplification in the magnetic field representation.
A convenient technique for the �� computation under such
conditions has been presented in Ref. 6.

The technique presented in Ref. 6 is based on integration
along magnetic field lines. The quantity �� is considered as
a gradient of one of the integrals of the magnetic field line
equations and is calculated using the corresponding differen-
tial equations for ��. This technique has been applied in a
number of papers related to studies of plasma equilibrium
currents and neoclassical transport for stellarator type mag-
netic fields which are originally available in real-space coor-
dinates �see, e.g., in Refs. 7–9�. In most of the configurations
treated in these references the magnetic fields possess the
so-called stellarator symmetry. Such a symmetry manifests
itself in existence of magnetic surface cross sections with
“up-down” symmetry. This simplifies the problem of deter-
mining initial conditions for integrating the �� equations.
The determination of these conditions is significantly
more complicated if the stellarator symmetry is violated. In
such a case, a preliminary computation of the corresponding
magnetic surface is necessary in order to find these initial
conditions.

In this paper, an effective technique for computing ��

and associated quantities for stellarator magnetic fields with
violated stellarator symmetry is introduced. To evaluate ��
the gradients of two integrals of the magnetic field line equa-
tions are determined.

This paper is organized as follows. Section II describes
the derivation of equations and formulas for computation of
��. In Sec. III a model of the magnetic field with broken
stellarator symmetry is discussed, namely, the magnetic field
of the Uragan-2M �U-2M� torsatron.10 For this magnetic
configuration the influence of current feeds and detachable
joints of the helical winding is taken into account. Compu-
tations of ��, the effective ripple �eff, and equilibrium cur-
rents are performed in Sec. IV. The geometrical factor for the
bootstrap current in the 1 /� transport regime, which is often
characteristic for stellarators, is also computed. Some con-
clusions are presented in Sec. V.

II. BASIC EQUATIONS

It is well known that in an arbitrary toroidal magnetic
field one can always find two independent integrals of the
equations of the magnetic field lines �see, e.g., Ref. 3�. If
magnetic surfaces �regular or island surfaces� exist, one of
these integrals can be found as a single valued integral �, the
magnetic surface integral. With this, another independent in-
tegral, �, turns out to be not single valued and �� increases
in general continuously along the magnetic field line �in case
of d� /d��0 where � is the rotational transform�.

In general there exists an infinite set of integrals of mag-
netic field line equations. Each of those integrals can be rep-
resented as some function of the two above mentioned inde-
pendent integrals. And, vice versa, the magnetic surface
integral � can be expressed as a function of two independent
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integrals. Consequently, the evolution of �� along the mag-
netic field line can be expressed as a linear combination of
gradients of these two independent integrals,

�� = ��1 + ���2, �1�

with ��1 and ��2 being gradients of conveniently chosen
independent not single valued integrals of the magnetic field
line equations. To evaluate ��1 and ��2 the equations

dQ1,i

ds
= −

1

B

�Bj

��i Q1,j , �2�

dQ2,i

ds
= −

1

B

�Bj

��i Q2,j , �3�

can be used. Here, s is the distance along the field line, Bj are
the contravariant components of B in real space coordinates
�i, whereas Q1,j =��1 /�� j and Q2,j =��2 /�� j are the covariant
components of Q1���1 and Q2���2, respectively. Equa-
tions �2� and �3� are a consequence of the equation
B ·��1,2=0 �see Ref. 6�.

To determine �� with help of Eq. �1�, the quantity � has
to be found. Preliminary computations of any magnetic sur-
faces have to be achieved. The integration of the magnetic
field line that determines the magnetic surface as well as the
integration of Eqs. �2� and �3� have to be performed for a
sufficiently large integration interval corresponding to a suf-
ficiently large number of turns around the torus. During this
integration all intersections of the field line with the initial
cross section of the magnetic surface are monitored. The
intersection, which is nearest to the initial point of the inte-
gration rst, is chosen as the final integration point r fin. Since
r fin is close to rst, the quantities ��st and �� fin should also
be close to each other. Here, ��st and �� fin are the magnetic
surface gradients �� at rst and r fin, respectively. Therefore,
the quantity f���= ��� fin−��st�2, or

f��� = ���1,fin + ���2,fin − ��1,st − ���2,st�2, �4�

should be small. To find � one has to minimize f���. Equat-
ing the derivative of f��� with respect to � to zero, one finds

� = −
b

a
, �5�

with

a = ���2,fin − ��2,st�2,

�6�
b = ���1,fin − ��1,st� · ���2,fin − ��2,st� .

It has to be ensured that the quantity � is determined
with high accuracy. In the next step, �� and associated quan-
tities can be computed. In particular ��st can be found using
formula �1� for ��1=��1,st and ��2=��2,st. After that the
approach of Ref. 6 can be used for further calculation of ��.
In this case instead of two sets of Eqs. �2� and �3� only one
set of equations of type �2� or �3� can be solved directly for
the vector P���:

dPi

ds
= −

1

B

�Bj

��i Pj ,

with Pj =�� /�� j �see also Eq. �55� in Ref. 8�. Comparing the
total computer time expenses it can be seen that the evalua-
tion of �� for magnetic configurations with lack of stellar-
ator symmetry is much more time consuming than the com-
putation of �� for magnetic configuration exhibiting
stellarator symmetry.

III. MAGNETIC FIELD PARAMETERS

To demonstrate the capabilities of the proposed approach
computations are performed for the magnetic configuration
of U-2M �l=2 torsatron, major radius R=170 cm, number of
helical field periods along the torus np=4; see Ref. 10�. The
influences of current-feeds and detachable joints of the heli-
cal winding are taken into account. Because of the nonsym-
metric arrangement of these elements of the magnetic sys-
tem, the stellarator symmetry of the resulting magnetic field
of U-2M is violated and there exists no cross section of mag-
netic surfaces with an up-down symmetry. The resulting
magnetic field and its spatial derivatives can be computed
using the Biot–Savart code of Ref. 11. This code is a refine-
ment of the former code of Refs. 12 and 13 in which com-
putations of magnetic surfaces for U-2M have been per-
formed taking into account the current feeds and detachable
joints.

In addition to Biot–Savart computations, the validity of
the �� computation is checked by representing the magnetic
field as the superposition of a finite number of toroidal har-
monic functions containing the associated Legendre func-
tions to minimize the computer time expenses. The form of
the superposition given in Ref. 14 is used:

B = �	 + � 
 A� + e�b0R/� , �7�

	 = �
n=0




�
m=−


�m�0�




Hnmc	nmc + Hnms	nms, �8�

	nms = �cosh � − cos �Qn−1/2
m �cosh ��sin�n� + m�� , �9�

	nmc = �cosh � − cos �Qn−1/2
m �cosh ��cos�n� + m�� ,

�10�

A� = �
n=0




CncA�nc + CnsA�ns, �11�

A�ns = �cosh � − cos �Qn−1/2
1 �cosh ��sin�n�� , �12�

A�nc = �cosh � − cos �Qn−1/2
1 �cosh ��cos�n�� . �13�

Here, 	 and A� are the scalar and vector potentials, respec-
tively, Qn−1/2

m are associated Legendre functions of the second
kind, �� ,� ,�� is the toroidal system of coordinates associ-
ated with the cylindrical system �� ,� ,z�, n and m are the
poloidal and toroidal harmonic numbers, R is the major ra-
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dius of the torus, and Hnms, Hnmc, Cns, and Cnc are the ex-
pansion coefficients.

The expansion coefficients of the decomposition are ob-
tained with preliminary computations of the magnetic field
using the Biot–Savart code. A total number of 158 toroidal
harmonics is used for the presented computations. Note that
a representation of the magnetic field is necessary where sine
as well as cosine harmonics are taken into account in the
scalar and vector potentials in order to describe the proper-
ties of the magnetic field without stellarator symmetry. If the
magnetic field exhibits stellarator symmetry, it is sufficient to
use only sine terms in the scalar potential and cosine terms in
the vector potential �see, e.g., in Ref. 8�.

For the study two different vacuum magnetic configura-
tions of U-2M are considered. For both configurations mag-
netic field parameters are chosen to provide magnetic sur-
faces which are well centered with respect to the vacuum
chamber. For the first configuration the toroidal magnetic
field is chosen in such a way that the rotational transform � is
within 1 /3���1 /2 �k�=0.31, see, in Refs. 10, 11, and 13,
k�=Bth / �Bth+Btt�, where Bth and Btt are the toroidal compo-

nents of the magnetic field produced by the helical winding
and the toroidal field coils, respectively�. The second con-
figuration �k�=0.295, see Ref. 10� has a slightly larger tor-
oidal magnetic field and � is within 0.31���0.383. For this
configuration the island magnetic surfaces with �=1 /3 are
inside the confinement region.

To demonstrate the accuracy of the magnetic field repre-
sentation with help of toroidal harmonics, cross sections of
the magnetic surfaces are compared. The B-field is computed
using both the representation with toroidal harmonics as well
as the Biot–Savart law. For this purpose the magnetic con-
figuration characterized by k�=0.31 is used. The result of
this comparison is presented in Fig. 1�a� for magnetic sur-
faces corresponding to three starting points for the integra-
tion, Rst, in the �=0 plane �z=0�. It follows from the figure
that for the magnetic field representation with toroidal har-
monics the shapes of the magnetic surfaces as well as the
rotational transform are in good agreement with those ob-
tained from the Biot–Savart code. Also, some magnetic sur-
faces obtained with help of the Biot–Savart code are shown
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FIG. 1. �a� Magnetic surfaces of U-2M �k�=0.31� inside the vacuum chamber for �=0 �top� and �=−� /4 �bottom�. The circle with a radius of 34 cm
represents the inner boundary of the vacuum chamber. The curves 1, 2, and 3 �dots; �=0.4244, 2/5, and 0.3384, respectively� correspond to the Biot–Savart
computations, curves 1h, 2h, and 3h �open circles, �=0.426, 2/5, and 0.3382, respectively� correspond to modeling the field with toroidal harmonics.
The integration has been started for the curves 1 and 1h at Rst=144.5 cm �in the �=0 plane�, for 2 and 2h at Rst=147.8 cm, and for 3 and 3h at
Rst=160.0 cm. �b� Inner, island ��=1 /3�, and boundary magnetic surfaces of U-2M in case of k�=0.295 for �=0 and �=−� /4.
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in Fig. 1�b� for the case of k�=0.295 to characterize this
magnetic configuration.

IV. CALCULATION OF ��, EQUILIBRIUM CURRENTS,
AND THE 1/� NEOCLASSICAL TRANSPORT

To determine the parameter � �see Eq. �5�� in prelimi-
nary computations for any starting point rst, the magnetic
field line as well as Eqs. �2� and �3� have been integrated for
an interval corresponding to 250 or 500 turns around the z
axis in the cylindrical coordinates � ,� ,z. For the integration
of Eqs. �2� and �3� the following quantities are used as initial
values of ��1 and ��2, ��1,st and ��2,st, respectively:

��1,st = B 
 ez/B , �14�

��2,st = B 
 e�/B , �15�

with e� and ez being the basis vectors �physical� of the cy-
lindrical coordinate system. Once � has been computed, ��,
given in Eq. �1�, and associated quantities can be calculated.

A. Calculation of �� and the Pfirsch–Schlüter
currents

Having calculated ��, the equilibrium plasma current
densities j� and j�, which are determined by the plasma pres-
sure gradient, can be calculated from equations �see, e.g., in
Refs. 2, 5, and 7�,

j� = c
dp

d�

B 
 ��

B2 , �16�

j� = − c
dp

d�
hB , �17�

dh

ds
= 2

	��	kG

B2 , �18�

with the plasma pressure p= p���, the geodesic curvature kG

of a magnetic field line, and

	��	kG =
B 
 �B · ��

B2 . �19�

Equation �18� is obtained from the magnetic differential
equation

B · �h = 2
	��	kG

B
. �20�

The solution of Eq. �17� which corresponds to the zero net
toroidal current condition2,4 results in the so called Pfirsch–
Schlüter current, jps. The quantity �, which is connected to j�

and j�,

� =
1

2

j�

j�

, �21�

is of interest since it is independent of the plasma pressure
gradient and characterizes the magnetic field geometry. A
decrease in j� / j� �see, e.g., in Ref. 15� corresponds to a
decrease in the perturbation of the vacuum magnetic con-
figuration caused by a plasma with finite � �� is the ratio of
the gas kinetic pressure to the magnetic pressure�.

The results of this subsection relate to the U-2M mag-
netic configuration with k�=0.31. The magnetic field is
represented with help of toroidal harmonics. Figure 2
shows the results of the �� computation for a magnetic
surface with starting point for the field line integration at
Rst=144.7 cm �zst=0, �=0, �=0.423�. The puncture plot
for the magnetic surface cross section is presented in the
�=0 plane. The segments of solid lines show the projection
of �� �in a convenient scale� onto the �=const plane. A
single valued character of the �� distribution is evident.

The results for the Pfirsch–Schlüter current calculations
for the same magnetic surface as used for Fig. 2 are pre-
sented in Fig. 3. For the �=0 and �=−� /4 cross sections the
parameter � is presented as a function of � /2�, with �
being the poloidal angle counted from the direction of the
normal to the circular axis of the torus. Note that for the
magnetic field of a conventional stellarator with circular
cross sections of magnetic surfaces the analogous distribu-
tion of � is of cosine form with an amplitude value of 1 / �.

For comparison, the parameter � is calculated also with
a different technique for evaluating ��. According to Ref. 16
�see also in Ref. 11�, �� can be represented in cylindrical
coordinates as

�� = lim
r2��0�→r1��0�

�r2��� − r1���� 
 B

	�r2��0� − r1��0�� 
 B��0�	
. �22�

Here, the curves r1��� and r2��� satisfy the field line equa-
tions dr /d�=�B /B� with starting points r1��0� and r2��0�,
respectively, and B��0� is B for the starting point r1��0�. The
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FIG. 2. The magnetic surface, with starting point for the integration
Rst=144.7 cm ��=0.423�, and its magnetic surface gradient �� in the
�=0 plane �k�=0.31, magnetic field is represented with help of toroidal
harmonics�.
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initial points r1��0� and r2��0� are on the same magnetic
surface and on the same meridian plane �0. In the prelimi-
nary computation of any magnetic surface corresponding to
the initial point r1��0�, the second starting point r2��0� can
be found in the same way as the point r fin in Sec. II.

For the magnetic surface corresponding to Rst

=144.7 cm the results of the �� computation using formula
�22� are very close to those shown in Fig. 2. The results for
the parameter � are presented in Fig. 4. In contrast with Fig.
3 substantial irregularities are seen in the curves of Fig. 4.
The reason is that in Eq. �22� the quantity r2���−r1��� is not
infinitesimally small. In practice it is small but finite. A small
inaccuracy in the �� calculation leads to a violation of the
equality 
	��	kG /B�=0 which is a condition of a single val-
ued �see, e.g., Refs. 2 and 5� solution of the magnetic differ-
ential Eq. �20�. Here, the angular brackets 
¯ � denote the
average over the volume of a thin layer between neighboring
magnetic surfaces. For nonrational magnetic surfaces �which
are realized in stellarators in most cases� this average can be
calculated using the integration along the magnetic field line
applying the formula


A� = lim
L→


�

0

L ds

B �−1

0

L

ds
A

B
. �23�

So, a small nonzero constant component appears in the right
hand side of Eq. �18�. For large integration intervals this
leads to growth of the value h and to irregularities in com-
putational results for the j� distribution. The obtained results
demonstrate the advantages of the technique of �� calcula-
tion presented in Sec. II.

B. Pfirsch–Schlüter factor „secondary currents… study

The parameter �, Eq. �21�, represents a local value of
the ratio of the parallel to the perpendicular current densities.
Another important parameter connected with these currents
is the so called Pfirsch–Schlüter factor,

�ps = 
j�
2� � 
j�

2 � . �24�

The averaging in Eq. �24� is performed using the rule �23�.
Computations of j� are performed with the usage of Eq. �17�
under the condition of zero net toroidal current. Under this
condition the secondary current j� is the so called Pfirsch–
Schlüter current, jps. Minimization of the ratio �24� is under-
stood to be important for stellarator optimization since a re-
duction of jps improves the equilibrium conditions of the
plasma �see, e.g., in Ref. 15�. Computational results obtained
for both configurations for the magnetic field computed us-
ing the Biot–Savart code are presented in Figs. 5 and 6.

For the tokamak or the classical stellarator �ps can be
evaluated by the ratio �ps

cl =2 / �2. For the considered configu-
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FIG. 3. The quantity �=0.5j� / j� �see also Eq. �21�� for the magnetic sur-
face presented in Fig. 2, in the �=0 �curve 1� and �=−� /4 �curve 2� planes.
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FIG. 4. The same as in Fig. 3, but using formula �22� for the �� calculation.
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FIG. 5. �Color online� Computational results for the Pfirsch–Schlüter factor
�ps �curve 1� using the Biot–Savart code for k�=0.31, 2: results for the cases
of good convergence of solution for j�, 3: results for the cases of some
violation of convergence of the j� solution; r is a mean radius of the mag-
netic surface, a is a mean radius of the outermost magnetic surface inside
the vacuum chamber. Values of �ps for 0.87�r /a�0.96 correspond to is-
land magnetic surfaces with �=2 /5. The values of r /a for these points are
shown schematically.
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rations the value of � is within 0.31���0.383 for k�

=0.295 and 0.335���0.422 for k�=0.31. This leads to val-
ues of �ps

cl in the range of 20.81��ps
cl �13.63 for k�=0.295

and 17.82��ps
cl �11.23 for k�=0.31. It follows from Figs. 5

and 6 that for the considered magnetic configurations the
parameters �ps are rather close to �ps

cl for the nonisland mag-
netic surfaces. �For a discussion of results with bad conver-
gence see Sec. IV E.�

C. Calculation of the bootstrap current
in the 1/� regime

In many papers the bootstrap current for the 1 /� regime
in stellarators is characterized by a certain geometrical factor
denoted below as �b. This factor enters into the expression
for the bootstrap current as a multiplier which takes into
account the magnetic field geometry. In magnetic coordinates
such a factor has been studied and calculated for stellarators
in a number of papers, e.g., in Refs. 17–19 and Refs. 20 and
21. For the case of real space coordinates the factor �b has
been obtained in Refs. 22 and 23. In accordance with these
references �b is determined as a dimensionless quantity by
integration along the magnetic field line length, s, and is
given as �see also in Ref. 9�:

�b =

�PSB2�


B2�
+ �B, �25�

with

�PS�s� =
2B0

2


	��	�
YPS�s�, YPS�s� = 


sm

s

ds�
	��	kG

B2 , �26�

�B =
3B0

2

8
	��	�
lim
L→


1

v3

0

J�min
abs

dJ�J�
2 1

IL



sm

L

ds
	v�	
B

YB�s� ,

�27�

YB�s� = 

sm

s

ds�
B	��	kG

	v�	3
, IL = 


sm

L

ds
	v�	
B

, �28�

where v�
2=v2−J�B, J�=v�

2 /B, J�min
abs =v2 /Bmax

abs corresponds
to the trapped-passing boundary, Bmax

abs is the global maximum
of B on the particular magnetic field line, and sm is the po-
sition of this maximum. It follows from the definition of �b

that this factor depends on the choice of the reference mag-
netic field B0. In further computations the different factor
�bb, �bb=�b
B2� /B0

2, is considered, which is independent
from the choice of B0.

For any magnetic surface a computation of �bb is per-
formed in three stages. In the first stage, a point correspond-
ing to the global maximum of B, sm, has to be found by
integration of the magnetic field line. In the second stage, the
parameter �, described in Sec. II, has to be determined. For
this step, sm is used as initial point for the integration. The
geometrical factor �b is calculated in the third stage using the
integration along the magnetic field line. Simultaneously, ��
is computed according to Eqs. �1�–�3�.

First, computations of �bb are performed for the mag-
netic configuration of k�=0.31 for the magnetic field repre-
sentation with help of toroidal harmonics. Figure 7 shows the
evolution of �b along the magnetic field line for the same
magnetic surface as for Figs. 2–4. The integration starts at
s=sm and the field line is followed 500 turns around the main
axis of the torus. It can be clearly seen that �b�L� �curve 1� is
oscillating with decreasing amplitude and finally converges
to the value of �b �line 2�. For comparison curve 3 in Fig. 7
shows �b�L� where Eq. �22� has been used for the computa-
tion of ��. It is seen that �b�L� does not converge to any
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FIG. 6. �Color online� The same as in Fig. 5 for k�=0.295. Enhanced values
of �ps for the region 0.61�r /a�0.85 correspond to island magnetic sur-
faces with �=1 /3. The values of r /a for this region are shown schematically.
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FIG. 7. �Color online� Geometrical factor �b, characterizing the bootstrap
current, for the same magnetic surface as for Figs. 2–4; 1: evolution of �b�L�
along the magnetic field line, 2: corresponding value of �b, 3: evolution of
�b�L� in case of using Eq. �22� for the computation of ��. N is the number
of turns around the main axis of the torus.
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final value in this case. This phenomenon and the irregulari-
ties in the Pfirsch–Schlüter current in Fig. 4 have the same
root.

Computational results for �bb as a function of the mean
radius of the magnetic surface are presented in Fig. 8 �see
curves 1 and 2�. It follows from Ref. 17 that an additional
factor enters into the expression of the bootstrap current if
the fraction of trapped particles is not very small. This factor
is approximately equal to 1 / fc with fc being the fraction of
the circulating particles,

fc =
3

4


B2�
�Bmax

abs �2

0

1 �d�


�1 − �B/Bmax
abs �1/2�

, �29�

with �=J�Bmax
abs /v2. In general, this leads to increased values

of the general geometrical factor compared to the values of
�b or �bb. Computational results for the 1 / fc parameter for
the same magnetic field parameters as for the �bb computa-
tion are presented in Fig. 8 �curve 3�, too. The analogous
results for �bb and 1 / fc obtained for the configurations of
k�=0.31 and k�=0.295 for the magnetic field computed with
the Biot–Savart code are presented in Figs. 9 and 10. Figures
8–10 also show the normalized �bb value, �bbn, which is a
ratio of �bb to the corresponding parameter of an equivalent
tokamak.

It follows from the computations that for the configura-
tion characterized by k�=0.31 noticeable island magnetic
surfaces with �=2 /5 exist near the plasma boundary. A sig-
nificantly broader �in r /a� island region for �=1 /3 exists for
the configuration corresponding to k�=0.295 �see Fig. 1�b��.

The values of �bb are significantly higher for the indicated
island regions than for adjacent nonisland magnetic surfaces.
It can be seen that for the considered configurations values of
�bbn for nonisland magnetic surfaces are rather close to unity
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FIG. 8. �Color online� Parameters �bb �curve 1� and 1 / fc �curve 3� for
k�=0.31 and with the magnetic field being represented with help of toroidal
harmonics. Curve 2 shows a normalized value of �bb, �bbn, determined as a
ratio of �bb to the corresponding parameter of an equivalent tokamak; r and
a are the same as in Fig. 5. Enhanced values of �bb and �bbn for r /a�0.9
correspond to island magnetic surfaces with starting points within
144.6 cm�Rst�148.0 cm �see Fig. 1�a��.
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FIG. 9. �Color online� Computational results for the parameters �bb �curve
1�, �bbn �curve 2� and 1 / fc �curve 3� for k�=0.31 in case of using the
Biot–Savart code; r and a are the same as in Fig. 5. Enhanced values of �bb

and �bbn for r /a�0.9 correspond to island magnetic surfaces with �=2 /5.
The values of r /a for these points are shown schematically.
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FIG. 10. �Color online� The same as in Fig. 9: for k�=0.295. Enhanced
values of �bb and �bbn for the region 0.61�r /a�0.85 correspond to island
magnetic surfaces with �=1 /3. The values of r /a for this region are shown
schematically.
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and, therefore, �bb is close to the corresponding factor of an
equivalent tokamak. Benchmarking the results for �bb from
Fig. 8 �toroidal harmonic functions� and Fig. 9 �Biot–Savart
code� one can conclude that these results are in a reasonable
agreement.

D. Calculation of the effective ripple

The effective ripple, �eff, is a widely used characteristic
quantity for the neoclassical transport in the 1 /� regime for
stellarators �see, e.g., in Ref. 15�. The quantity �eff

3/2 enters
into the 1 /� transport coefficients as a factor which takes
into account the magnetic field geometry. Here, �eff

3/2 is calcu-
lated using a field line following code based on equations
obtained in Ref. 8 for the magnetic configuration of k�

=0.31 for the magnetic field representation with help of tor-
oidal harmonics. The obtained results for �eff

3/2, expressed as a
function of the mean radius of the magnetic surface, are pre-
sented in Fig. 11 �curve 1�. For comparison, also formula
�22� is used for the computation of �� which enters into the
expression of �eff

3/2. The corresponding results are shown in
Fig. 11 �open circles�. It can be seen that, practically, these
results do not differ from the results when �� is calculated
using the technique proposed in Sec. II. In Fig. 11 �rhombi�
analogous results obtained in Ref. 11 are shown. For this
computation the Biot–Savart code has been used and �� has
been calculated according to Eq. �22�. It follows from the
comparison that the results of Ref. 11 differ only slightly
from those obtained in the present paper. This allows to state
that for the 1 /� transport study the calculation of �� accord-
ing to Eq. �22� is quite admissible.

E. Convergence of obtained results

Beside magnetic surfaces with good convergence of the
solutions for �b and j� within the used integration interval,
there exist magnetic surfaces for which convergence is worse
when using the same integration interval. It is found that this
phenomenon takes place in the vicinity of resonant �nonis-
land� magnetic surfaces with a rotational transform � close to
rational. In Figs. 5 and 6 the results are presented for cases of
good convergence as well as for cases where convergence is
worse. It can be seen in the presented figures that a violation
caused by a too short integration interval has no significant
influence on the results for �ps as long as this violation is not
too strong.

One has also to keep in mind that in the vicinity of
rational magnetic surfaces a reduced convergence of the pa-
rameter �b can take place even for configurations possessing
stellarator symmetry �see Ref. 24�. It follows from Ref. 24
that in some cases a substantial increase in the integration
interval is necessary to obtain a converged solution for �b.
Integration intervals of 250–500 turns around the torus can
be insufficient for obtaining converged solutions of �b, for all
magnetic surfaces of the given devices.

V. CONCLUSION

In the proposed technique the magnetic surface gradient,
��, is represented as a linear combination of gradients of
two conveniently chosen, independent, not single valued in-
tegrals of the magnetic field line equations. The correspond-
ing coefficients of this combination can be determined using
the technique of magnetic field line integration for a suffi-
ciently large integration interval. The requirement that �� is
single valued should be fulfilled on this interval. The mag-
netic surface gradient �� and associated quantities can be
calculated using the obtained coefficients.

To demonstrate its capabilities, this method is applied to
the magnetic field of Uragan-2M with broken stellarator
symmetry. In Ref. 11 computations of this magnetic field
have been performed with help of the Biot–Savart code. This
code is used for a part of the computations presented in Sec.
IV. In another part of the paper the magnetic field is repre-
sented as a superposition of a finite number of toroidal har-
monic functions. The chosen number of toroidal harmonics
satisfies the condition that the shapes of the magnetic sur-
faces as well as the rotational transform are in good agree-
ment with those obtained with help of the Biot–Savart code.
The usage of expansion in the toroidal harmonic functions
allowed to minimize essentially the computer time expenses
in those computations which serve to confirm the validity of
the approach and the correctness of the general code.

The proposed technique for �� computations is applied
to U-2M for studies of the 1 /� neoclassical transport as well
as the equilibrium currents including the bootstrap current in
the 1 /� regime and is accompanied by comparison with the
approach of Refs. 11 and 16. The advantage of the new tech-
nique is that �� can be computed with high accuracy for flux
surfaces of magnetic configurations which do not exhibit
stellarator symmetry. This has been demonstrated in the pre-
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FIG. 11. �Color online� Computational results or �eff
3/2 for k�=0.31; 1: for the

technique of the �� calculation presented in Sec. II, 2: �open circles� for the
�� calculation using Eq. �22�, 3: �rhombi� corresponding results from
Ref. 11; r and a are the same as in Fig. 5; enhanced values of �eff

3/2 for
r /a�0.9 correspond to island magnetic surfaces. Curves 1 and 2 correspond
to the magnetic field represented with help of toroidal harmonics.
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sented comparison. At the same time it is found that the
technique applied in Ref. 11 is admissible for the 1 /� trans-
port computation.
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