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Abstract

The next generation of experiments - both for tokamaks and stellarators - requires the
development of appropriate theoretical models. One important aspect here is the plasma
edge physics description. Fluid transport codes extending beyond the standard 2-D code
packages like B2-Eirene or UEDGE are under development. In the case of tokamaks, an
interesting alternative line is the concept of an ergodic edge (necessary e.g. for ergodic
divertors in TORE SUPRA or TEXTOR-94) creating a 3-D edge structure. To study these
effects, a 3-D code E3D based upon a Multiple Coordinate Systems Approach is being
developed. Presently, we are extending the program towards stellarator applications. A few
new options are made available: single-island geometry and new formulation of boundary
conditions.

For the new stellarator W7-X, a 3-D finite volume code BoRiS is being developed using
magnetic (Boozer) coordinates. In this paper, we present a benchmark of both codes, for
a test geometry (one single magnetic island in W7-X) including full 3-D metric variations,
solving for the strongly anisotropic electron heat conduction equation.

1 Introduction.

E3D is a 3D scrape-off-layer (SOL) plasma transport code under development to solve
a system of plasma fluid equations in a general magnetic geometry including intact
magnetic surfaces, island chains and ergodic regions. It is a fluid Monte-Carlo code
based upon our Multiple Coordinate System Approach (MCSA, see Ref. [1] for details).
E3D was originally developed for tokamaks ergodic divertors (TEXTOR-94, TORE
SUPRA) and is currently being extended towards stellarator applications (W7-X).
In this paper we discuss new options: single-island geometry and a more accurate
formulation of boundary conditions.

Another code (BoRiS, Ref. [2]) is also being developed to solve a system of plasma
fluid equations, based upon a more conventional numerical approach (finite-volume
discretization, like the well-known B2 code). BoRiS uses magnetic coordinates, thus
allowing for standard discretization methods with higher order schemes retaining essen-
tial geometrical flexibility. It requires (for magnetic coordinates to exist) a negligible
level of ergodicity.

Benchmarking of these two 3D codes based upon different numerical approaches
against each other seems natural. The test model should be a compromise between
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geometrical complexity and physical transparence. Here, we have chosen an analytical
representation (actually, a fit) for Boozer coordinates of a single island of the stellarator
W7-X. Such a representation, which had been introduced in Ref. [3], was used in the
present paper in a simplified form. We restrict ourselves to the conduction part of the
electron energy equation, assuming constant plasma density.

In Section 2 we summarize the main ideas of MCSA and introduce the transport
model equation used in both codes. In Section 3 we formulate a new approach to the
boundary conditions, which is a non-trivial task for Monte-Carlo techniques in general
coordinates. In Section 4, we describe the geometry of the test case (single island of
W7-X) and discuss the results.

2 Transport model.

Let us consider the heat balance equation for electrons in the following vector form of
the conservation law neglecting convection for simplicity,

∂

∂t

3

2
nT −∇ · [κ⊥∇T +

(
κ‖ − κ⊥

)
hh · ∇T

]
= 0. (1)

Here T stands for the electron temperature, n is the plasma density (further assumed
to be constant for simplicity), h = B/B is a unit vector along the magnetic field,
κ⊥ and κ‖ are the anomalous (usually constant) perpendicular and classical parallel
thermal conductivity coefficients, respectively.

In general curvilinear coordinates xi, Eq. (1) can be written in the following form:

∂T

∂t
=

1√
g

∂

∂xi

√
g

(
Dij ∂T

∂xj

)
. (2)

Here, g is the metric determinant and Dij is the diffusion tensor appropriate for T ,

Dij =
2

3

[
χ⊥gij +

(
χ‖ − χ⊥

)
hihj

]
, (3)

where gij = (∇xi) · (∇xj) and hi = h ·∇xi are contravariant components of the metric
tensor and of the unit vector along the magnetic field, respectively, χ⊥ ≡ κ⊥/n and
χ‖ ≡ κ‖/n.

In Ref. [1], we proposed a general class of possible coordinate systems which permits
strict separation of perpendicular and parallel fluxes (being different by several orders
of magnitude for typical plasma parameters).This is the type of coordinate systems
that are used in fusion plasma analysis to construct magnetic stream functions (Clebsch
coordinates [4]). For such a coordinate system, the minimum requirement is that the
first two variables xi must satisfy the magnetic differential equation,

h · ∇xi = 0, i = 1, 2, (4)

while the third variable, x3, is an angle-like variable which is increasing along the
magnetic field lines,

h · ∇x3 > 0. (5)

Hence, we require that the covariant base vector e3 points along the magnetic field line,
i.e. the parallel flux has only one non-vanishing component. Generally, we are forced to



Runov et al., Benchmark of the 3-Dimensional Plasma Transport Codes... 171

restrict the scope of a single coordinate system by some proper length (the theoretical
limit here is the Kolmogorov length), hence the use of local magnetic coordinates.
We couple the neighbouring coordinate systems with the help of an Interpolated Cell
Mapping technique (a precomputed transformation of lines x1 = const. and x2 =
const., interpolated by means of bicubic splines). By increasing the mesh size within
practically available computer memory limits, one can reduce the errors introduced by
this kind of ICM to the level of the direct field line tracing error.

To specify a local magnetic coordinate system, one needs initial conditions for
Eq. (4). In general, these can be any two one-parametrical families of curves on some
surface which is never tangential to the magnetic field. In [1] we used a 2D Cartesian
mesh for this purpose. In the particular case when Boozer coordinates (s, ϑ, ϕ) are
available everywhere in computational region, the coordinate lines can be used as
the base curves (initial conditions for Eq. (4)). One can build the local magnetic
coordinates xi as follows:

x1 = s, x2 = ϑ − ιϕ, x3 = ϕ. (6)

3 Boundary conditions.

Using a set of local coordinate systems, we have already made our choice of numerics
in favour of Monte-Carlo. Indeed, an individual fluid “parcel” retains its identity also
when it is handed over from one coordinate system to a neighbouring one. This avoids
the otherwise arising problem of numerical diffusion. Within a single local coordinate
system, our approach reduces to a conventional Monte-Carlo method for convection-
conduction equations in curvilinear coordinates.

There are three commonly used kinds of boundary conditions to Eq. (1): 1) pre-
scribed value T on a boundary; 2) prescribed incoming flux through a boundary;
3) prescribed relation between the value on and outgoing flux through a boundary
(frequently formulated as a given decay length). The Monte-Carlo realization of the
first two problems is rather straightforward. Indeed, we know the statistical weight
of a parcel, thus, in the case (1) we have to sustain a given amount of parcels in
all boundary cells (eventually taking account of the gradient of T in the distribution
of parcels). In the second case, we have e.g. to reflect the “old” parcels from the
boundary and to keep a source of the “new” parcels of known intensity through the
boundary.

The third kind of boundary condition (conditional sink of parcels) is more compli-
cated: it should be formulated in terms of the probability A of the absorbtion of the
parcels. Let us first derive A in the 1D case to demonstrate the basic principle. In the
vicinity of the boundary we can neglect the gradient of T and convection. We have to
keep the condition Γ = wVn, where Γ physically means the outgoing flux, w = 1.5nT
and Vn is a preset normal component of velocity. The 1D equation obtained is of the
form

∂w

∂t
= χ

∂2

∂x2
w. (7)

The corresponding random walk process with Gaussian distribution of random num-
bers can be described with an integral operator as follows:

w(x) =

∞∫
−∞

dx′P (x − x′)w0(x
′), where w0(x

′) = const, (8)
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and P (∆x) =
1√

4πχ∆t
exp

(
− ∆x2

4χ∆t

)
. (9)

After the time step ∆t the total weight of the particles crossing the wall (x = 0) is

∆W =

0∫
−∞

dxw(x) = w0

0∫
−∞

dx

∞∫
0

dx′P (x − x′) = w0

√
χ∆t

π
. (10)

On the other hand, the boundary condition states that this weight must be

∆Wout = w0Vn∆t = A∆W, hence A =

√
πV 2

n ∆t

χ
. (11)

In 3D, we introduce an additional Cartesian coordinate system (x, y, z), z taken along
the magnetic field line. Let us remember that any linear combination of Gaussian
random numbers also obeys a Gaussian distribution. Thus, if we perform our step in
general coordinates x1, x2, x3 with Gaussian random numbers, we will obtain for x, y, z
the following transition probability:

P (∆x, ∆y, ∆z) =
1

4πχ⊥
√

4πχ‖
exp

(
−∆x2 + ∆y2

4χ⊥∆t
− ∆z2

4χ‖∆t

)
. (12)

As in the 1D case, we need the total weight ∆W , which crosses a unit square element
of the wall in time ∆t. Let us introduce the rotated coordinate system x1, y1, z1, where
the axis x1 is normal to the wall. Then

∆W = w0

0∫
−∞

dx1

∞∫
0

dx′
1

∞∫
−∞

dy1

∞∫
−∞

dz1P1(x1 − x′
1, y1 − y′

1, z1 − z′
1), (13)

where we use the probability distribution from Eq. (12) and take into account the
rotation of the coordinate system. The result of the integration is

∆W = w0

√
(χ‖ sin2 α + χ⊥ cos2 α)∆t

π
, (14)

where α is the angle between the field line and the wall. This weight must be equal
to Vn∆tw0/A, thus, for the absorbtion coefficient, we have

A =

√
πV 2

n ∆t

χ‖ sin2 α + χ⊥ cos2 α
. (15)

4 Test geometry and results.

In the present paper we test our numerical realization of the magnetic field geometry
and of boundary conditions (mixed condition). To that effect, we need a benchmark
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case to compare our solutions properly. Here, we base our treatment upon the ana-
lytical formulas of Ref. [3] for Boozer coordinates of a single island of the stellarator
W7-X. The fit formulae obtained in Ref. [3] for a single island through the chain of
the codes GOURDON → DESCUR → VMEC → JMC are:

√
g = −534. − 86. cos(2πϕ), gsϑ = 5.6 sin[4π(ϑ− ϕ)] (16)

gss = s(43. + 37. cos[4π(ϑ− ϕ)]) (17)

F ′
T = π, I = 882, ι ≡ F ′

P/F ′
T = 1.085, (18)

together with usual “plasma edge approximation” J = 0, gϕs = 0. Here, FT and FP are
toroidal and poloidal magnetic fluxes, respectively, J and I are toroidal and poloidal
currents, respectively, ι is the rotational transform. This information is sufficient to
derive the full metric tensor of Boozer coordinates,

B2
0 = −IF ′

T√
g

gϑϑ =
1

B2
0

F ′2
T gss (19)

gϑϕ = − 1

B2
0

F ′
TF ′

Pgss gϕϕ =
1

B2
0

(
I2 + F ′2

P gss
)

For our test purposes, this model geometry of an island can be simplified further. We
neglect the angular dependence of

√
g and set ι = 1 (here, we induce an error of about

15%).
Taking account of Eqs. (16), (19) and the transfor-

Fig. 1: Benchmark geometry:
Single island (real space).

mation rule (6), we obtain the contravariant metric ten-
sor of our local magnetic coordinate system:

g11 = gss, g12 = gsϑ, g13 = 0

g22 = gϑϑ − ιgϑϕ, g23 = 0, g33 = gϕϕ (20)

h3 = hϕ =

√
F ′

T

−I
√

g
.

It is easy to see that in the (artificial) case of no de-
pendence of χ‖ on the temperature, one can separate
the variables in Eq.(2) and reduce the dimensionality
of the problem by 1 (the additional requirement here
is the symmetry of the boundary conditions along x3).
It seems reasonable to define χ‖(T ) ≡ χ‖(T0) for some
fixed temperature T0 and to use the simplified equa-
tion as the test transport model. The resulting (steady-
state) 2D equation

∂

∂x1

(
g11 ∂T

∂x1
+ g12 ∂T

∂x2

)
+

∂

∂x2

(
g21 ∂T

∂x1
+ g22 ∂T

∂x2

)
= 0 (21)

can be solved both with E3D and BoRiS. Moreover, there exist pre-packaged library
subroutines able to solve such a problem. In the present work, we use the D03RAF
subroutine from the NAG library as an additional check of the results.

The computational domain for the test calculations corresponds approximately to
the single island of W7-X described above (Fig.1 shows the island in real space). For
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a) c)b)

Fig. 2: The solution of the Eq. (21) by means of E3D (a), BoRiS (b) and D03RAF (c) .

purposes of this the test, we impose an artificial “inner” boundary at s = 0.1 (just
a hole in the middle of the island) and fix the temperature to 30eV there. On the
“outer” boundary (s = 1), we preset the following relation between the temperature
and the outgoing heat flux:

q ≡ g11 ∂T

∂x1
+ g12 ∂T

∂x2
=

√
g11γT, where γ = 0.0555.

The results of modelling with all three methods are presented in Fig.2. They demon-
strate very good agreement within the numerical accuracy. The steep gradient in the
profile of T is a pure geometrical effect (the island is very strongly elongated in real
space, see Fig.1).

5 Conclusions

A new formulation of the boundary conditions for the code E3D has been developed
and built in as a regular option. A simplified magnetic geometry which allows the non-
trivial benchmarking of the plasma transport codes has been proposed. The results
obtained with both E3D and BoRiS codes demonstrate a good agreement with each
other and with the “sample” solution from D03RAF subroutine (NAG library).
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