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Abstract

Both stellarators and tokamaks can have quite complex magnetic topologies in the plasma edge. Special complexity

is introduced by ergodic effects producing stochastic domains. Conventional numerical methods from fluid dynamics

are not applicable in this case. In the present paper, we discuss two alternative possibilities. Our multiple coordinate

system approach (MCSA) [Phys. Plasmas 8 (2001) 916] originally developed for the TEXTOR DED allows modelling

of plasma transport in general magnetic field structures. The main idea of the concept is: magnetic field lines can exhibit

truly stochastic behavior only for large distances (compared to the Kolmogorov length), while for smaller distances, the

field remains regular. Thus, one can divide the computational domain into a finite set of sub-domains, introduce local

magnetic coordinate systems in each and use an �interpolated cell mapping� technique to switch between the neighboring
coordinate systems. A 3D plasma fluid code (E3D, based upon MCSA) is applied to realistic geometries. We also

introduce here some new details of the algorithm (stellarator option). The results obtained both for intrinsic (stellarator)

and external (tokamak with ergodic divertor) perturbations of the magnetic field are discussed. Another approach, also

using local coordinate systems, but based on more conventional finite difference methods, is also under development.

Here, we present the outline of the algorithm and discuss its potential as compared to the Lagrangian Monte-Carlo

approach.
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1. Introduction

The new generation of fusion devices – both stella-

rators and tokamaks – are being built with very com-

plicated topology of the field lines [2,3], including intact

magnetic surfaces, island chains, ergodic and laminar

zones. Ergodic effects can be an intrinsic property (e.g.

in W7-X, due to finite b effects) or can be caused by
externally applied �ergodic divertors� (e.g. TEXTOR
DED). The key point for a quantitative assessment of

plasma edge and surface effects under such conditions is

a formally correct computational description also of the

regions with fully or partially developed ergodic mag-

netic field structure. This leads to difficulties in edge

plasma modelling compared to the �classical� tokamak
divertor: the problem becomes essentially 3D (i.e., one

can only poorly represent the magnetic geometry by a

toroidally averaged grid [4]). In addition, partly devel-

oped ergodicity prevents the usage of some �global�

* Corresponding author. Tel: +49-3834 882432; fax: +49-

3834 882409.

E-mail address: runov@ipp.mpg.de (A. Runov).

0022-3115/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.
PII: S0022 -3115 (02 )01500 -3

Journal of Nuclear Materials 313–316 (2003) 1292–1297

www.elsevier.com/locate/jnucmat

mail to: runov@ipp.mpg.de


magnetic coordinate system aligned to magnetic surfaces

since these surfaces do not exist anymore. It should be

noted that such a non-regular behaviour of the magnetic

field lines in the stellarator periphery is rather a rule:

even in the same device, with increased plasma pressure,

ergodic layers may appear at the location of former

regular islands [11]. The existing 3D plasma edge codes

are usually restricted to the case of weak perturbation

(spectral methods [10]) or regular magnetic geometry

(intact islands [7,9]), see Ref. [1] for a more detailed

discussion.

In our previous work [1] we have presented our 3D

plasma fluid code (E3D) addressing this matter. E3D is a

3D scrape-off-layer plasma transport code under devel-

opment to solve a system of plasma fluid equations in

this general magnetic geometry. It is a fluid Monte-

Carlo code based upon our multiple coordinate system

approach (MCSA, see Ref. [1]). The main idea of the

concept is: magnetic field lines can exhibit truly sto-

chastic behavior only at large distances (compared to the

Kolmogorov length, i.e. the characteristic length of the

exponential divergency of two initially neighboring

starting points), while for smaller distances, the field

lines remain regular. Thus, one can divide the compu-

tational domain into a finite set of sub-domains, intro-

duce local magnetic coordinate systems in each and use

an �interpolated cell mapping� technique to switch be-
tween the neighboring coordinate systems. The method

has been successfully benchmarked in a non-trivial case

(single island geometry) against the 3D finite-volume

code BoRiS [12]. E3D was originally developed for

tokamak ergodic divertors (TEXTOR-94) and is cur-

rently being extended toward stellarator applications

(W7-X). Here, we present some geometrical improve-

ments of the algorithm. We restrict ourselves to the

conduction part of the electron energy equation, as-

suming constant plasma density.

An alternative numerical realization of the idea of

MCSA (based upon a finite-difference scheme) is also

being investigated. The major problem to be overcome is

the problem of properly closing the discretization of the

grid created by field line tracing.

In Section 2 we summarize the main ideas of MCSA

and introduce the transport model equation used fur-

ther. In Section 3 we formulate our modifications of the

geometry (stellarator option) and discuss the alternative

numerical approach mentioned above. In Section 4, we

present and discuss the first results for W7-X.

2. Transport model

Following Ref. [1], we restrict ourselves to the heat

balance equation for electrons, neglecting convection for

simplicity:

o

ot
3

2
nT �r � j?rT

�
þ ðjk � j?Þhh � rT

�
¼ 0: ð1Þ

Here T stands for the electron temperature, n is the
plasma density (further assumed to be constant), h ¼
B=B is a unit vector along the magnetic field, j? and jk
are the anomalous (usually constant) perpendicular and

classical parallel thermal conductivity coefficients, re-

spectively.

In general curvilinear coordinates xi, Eq. (1) can be
written in the following form:

oT
ot

¼ 1ffiffiffi
g

p
o

oxi
ffiffiffi
g

p
Dij oT

oxj

� �
: ð2Þ

Here g is the metric determinant and Dij is the diffusion

tensor appropriate for T ,

Dij ¼ 2
3
½v?g

ij þ ðvk � v?Þhihj�; ð3Þ

where gij ¼ ðrxiÞ � ðrxjÞ and hi ¼ h � rxi are contra-
variant components of the metric tensor and of the unit

vector along the magnetic field, respectively, while

v? 
 j?=n and vk 
 jk=n.
In Ref. [1], we proposed a general class of possible

coordinate systems which permits strict separation of

perpendicular and parallel fluxes (being different by

several orders of magnitude for typical plasma para-

meters). This is the type of coordinate systems that are

used in fusion plasma analysis to construct magnetic

stream functions (Clebsch coordinates). For such a co-

ordinate system, the minimum requirement is that the

first two variables xi must satisfy the magnetic differen-
tial equation,

h � rxi ¼ 0; i ¼ 1; 2; ð4Þ

while the third variable, x3, is an angle-like variable
which is increasing along the magnetic field lines,

h � rx3 > 0: ð5Þ

Hence, we require that the covariant base vector e3 point

along the magnetic field line, i.e. the parallel flux has

only one non-vanishing component.

Generally, we are forced to restrict the scope of a

single coordinate system by some proper length (the

theoretical limit here is the Kolmogorov length), hence

the use of local magnetic coordinates.

We couple the neighboring coordinate systems with

the help of an �interpolated cell mapping� technique (a
precomputed transformation of lines x1 ¼ constant and
x2 ¼ constant, interpolated by means of bicubic splines).
By increasing the mesh resolution within practically

available computer memory limits, one can reduce the

errors introduced by this kind of ICM to the level of the

direct field line tracing error.
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To specify a local magnetic coordinate system, one

needs initial conditions for Eq. (4). In general, these can

be any two one-parametric families of curves on some

surface which is never tangential to the magnetic field

(reference cut). In [1] we used a 2D Cartesian mesh for

this purpose. A good choice of the coordinates x1; x2 is a
non-trivial task for stellarator applications. We will treat

this subject in Section 3.

3. Stellarator geometry

We introduce two essential geometrical improve-

ments in this section: first, we optimize the choice of

basis curve families being the initial conditions for Eq.

(4); second, we reduce the number of our local coordi-

nate systems to the minimum possible (1 in this partic-

ular case) to speed up our calculations.

In the previous version of the code, the number of

coordinate systems was chosen large enough, such that

the variation of metric coefficients along the magnetic

field lines was small within the domain of a particular

coordinate system. However, this limitation may be

stronger than the requirement of relatively simple to-

pology of the magnetic field near the wall. The excessive

number of coordinate systems causes the overuse of

memory and slows down the algorithm, because many

changes of coordinate systems may be necessary for

advancing a test particle by one time step. In the present

realization of the code, the number of coordinate sys-

tems is not linked to the parallel scale of the metric

tensor anymore.

In the case of a stellarator, simple Cartesian (or po-

lar) meshes are an unnatural basis for the families of

coordinate planes because of the more complicated

shape of the magnetic surfaces (wherever they exist).

Indeed, one should be able to reproduce at least the last

closed magnetic surface and the wall very precisely to

pose reasonable boundary conditions. The idea here is:

we do not intend to (nor can) reproduce magnetic sur-

faces exactly in case of ergodicity, but we try to cover the

configuration with our mesh as efficiently as possible.

Let us choose the section u ¼ um 
 p=5 (�triangular�
section) as a reference cut, and require that our inner

boundary (to the core plasma) exactly coincide with

some closed magnetic surface at the edge. As the outer

boundary we use here an outer closed magnetic surface

(existing in this particular case, see Fig. 1(a)), and in-

troduce the �radial� variable q as a coefficient of linear
interpolation in between. (Probably, the wall itself could

be the better choice as the outer boundary of compu-

tational domain, and we plane this improvement for the

future.) The natural choice of the second one is the

VMEC angle-like poloidal variable #V (see Ref. [8] for
details). Further we will refer to this mesh as �quasi-
magnetic� (QM). It is defined through cylindrical coor-

Fig. 1. W7-X: (a) Poincar�ee plot; (b) electron temperature profile on the section u ¼ p=5 (real space).
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dinates as follows. We have both closed magnetic

surfaces in form of a Fourier expansion over VMEC

angles:

Rin 
 Rinð#V;uÞ; Rout 
 Routð#V;uÞ;
zin 
 zinð#V;uÞ; zout 
 zoutð#V;uÞ:

ð6Þ

The VMEC angle u is the same as the toroidal angle of
cylindrical coordinates. We have explicit transformation

formulas from the QM to Cartesian mesh:

R ¼ Q1ðq; #V;uÞ ¼ qRoutð#V;uÞ þ ð1� qÞRinð#V;uÞ;
z ¼ Q2ðq; #V;uÞ ¼ qzoutð#V;uÞ þ ð1� qÞzinð#V;uÞ:

ð7Þ

Here 06 q6 1. The inverse transformation is given by

functions P 
 Qð�1Þ,

q ¼ P 1ðR; z;uÞ and #V ¼ P 2ðR; z;uÞ: ð8Þ

These functions are obtained by the numerical inversion

of the set of non-linear algebraic equations (7) and are

needed only at the reference cut u ¼ um.
Using the usual tensor algebra rule,

gijnew ¼ gklold
oxinew
oxkold

oxjnew
oxlold

; ð9Þ

the metric tensor of cylindrical coordinates is trans-

formed to local magnetic coordinates through subse-

quent changes of the following coordinate systems:

(1) cylindrical coordinates y 
 ðy1; y2; y3Þ ¼ ðR; z;uÞ;

(2) local magnetic coordinate system with Cartesian

mesh as the base curves v ¼ ðv1; v2; v3Þ;
(3) local magnetic coordinate system with QM as the

base curves x 
 ðx1; x2; x3Þ.

The first and second coordinate systems are linked by

the field line (orbit) integration using a method similar

to Refs. [5,6]. All three systems have (almost) the same

third coordinate, y3 
 u and x3 
 v3 
 u � um. It means,
the local magnetic coordinate systems (2) and (3) are

simply linked by Eqs. (7), (8) (replacing ðR; zÞ with
ðv1; v2Þ and ðq; #VÞ with ðx1; x2Þ).
The finite difference code makes use of an optimized

grid which has to be constructed to minimize numerical

diffusion: the basic idea is to use only those field lines

which get so close back to their starting points that the

numerical diffusion is sufficiently small, i.e. satisfying

D � Lk

ffiffiffiffiffiffiffiffiffiffiffiffi
v?=vk

q
; where D is the excursion between the

start and end points on the cut and Lk � 2pRN is

the distance between the same points measured along

the field line (N is the number of toroidal turns). For the
parameters we use to construct the W7-X grid (D ¼ 1
mm, N ¼ 50=100 by plasma radius about 0.5 m), the
induced numerical diffusion is of the order 10�4 m2/s, i.e.

negligible compared to the physical v?. The physics ar-

gument for the procedure discussed above is that if this

excursion between the two points gets below one ion

gyroradius (which is of the order of 1 mm) one should

not expect physics differences. It then solves the trans-

port equations using local magnetic coordinates. The

transport contributions on the toroidal cuts are dis-

cretized by Delauney triangulation. For this, the flux

Fig. 2. The same as in Fig. 1, magnetic coordinates.
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balances based on Voronoi cells are solved and a finite-

difference discretization is obtained by dividing through

the control volumes (see Ref. [13] for details of the nu-

merical method). The remaining terms, where variations

along the field lines are treated, are discretized with

central differences. First results for 1D, 2D and simpli-

fied 3D cases were obtained and a grid for W7-X was

constructed. The potential of this model lies in the fact

that, instead of the computational expensive Monte-

Carlo estimate, optimized numerics (e.g. solvers, pre-

conditioners) can be used. In comparison with finite

volume methods, one does not have the problem of

constructing 3D computational cells (which in ergodic

systems get more and more distorted and have to cover

the full domain to guarantee flux conservation).

4. Results and discussion

The improved MC method described above is applied

to W7-X (Fig. 1 and 2), demonstrating the general ap-

plicability of our method. We solve the Eq. (2) in a low-b
case with prescribed electron temperatures at both

boundaries (100 and 10 eV, respectively). Qualitatively,

the results are similar to our previous calculations for

the ergodic divertor of TEXTOR-94 (Fig. 3): the struc-

ture of the magnetic field (see Poincar�ee maps (a)) mod-
ulates strongly the temperature field (b).

This corresponds to the effect of a component of fast

parallel transport in the radial direction. It should be

noted that, unlike in our previous publication [1], the

magnetic field of TEXTOR-94 used in the results pre-

sented in Fig. 3, is based on calculations taking into

account the real coil system instead of analytical model,

but with our �old� ideology of the choice of coordinates
[1].

The small stochasticity in the low-b case of W7-X
leads to some �heat leakage� (enhanced energy transport
towards the wall) in the vicinity of the X-points. One can

expect an increase of this effect with higher plasma

pressures. Further work for W7-X is necessary to ana-

lyze cases with stronger ergodicity (higher b) and to in-
clude the complete geometry (vessel walls, limiters,

target plates, ...). An extension of this work to the full set

of transport equations is then the final step.

5. Conclusions

E3D is approaching a level of maturity for general

applicability: the geometry of the code is generalized to

various applications (W7-X, TEXTOR, etc.) Calcula-

tions for heat conduction in real W7-X and TEXTOR

geometries demonstrate that the structure of the mag-

netic field strongly modulates the temperature field. The

small stochasticity in the low-b case of W7-X leads to
some �heat leakage� in the vicinity of X-points.
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