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One important aspect of modern fusion research is plasma edge physics. Fluid transport codes extending be-
yond the standard 2-D code packages like B2-Eirene or UEDGE are under development. A 3-dimensional
plasma fluid code, E3D, based upon the Multiple Coordinate System Approach and a Monte Carlo integration
procedure has been developed for general magnetic configurations including ergodic regions. These local mag-
netic coordinates lead to a full metric tensor which accurately accounts for all transport terms in the equations.
Here, we discuss new computational aspects of the realization of the algorithm.

The main limitation to the Monte Carlo code efficiency comes from the restriction on the parallel jump of
advancing test particles which must be small compared to the gradient length of the diffusion coefficient. In
our problems, the parallel diffusion coefficient depends on both plasma and magnetic field parameters. Usually,
the second dependence is much more critical. In order to allow long parallel jumps, this dependence can be
eliminated in two steps: first, the longitudinal coordinate x3 of local magnetic coordinates is modified in such
a way that in the new coordinate system the metric determinant and contra-variant components of the magnetic
field scale along the magnetic field with powers of the magnetic field module (like in Boozer flux coordinates).
Second, specific weights of the test particles are introduced. As a result of increased parallel jump length, the
efficiency of the code is about two orders of magnitude better.
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1 Introduction

In Ref. [1], a Monte Carlo approach has been proposed for the modelling of particle and energy transport in
three-dimensional (3D) magnetic fields of general topology which may include regions with embedded magnetic
surfaces as well as regions with islands and ergodic magnetic field lines. This approach is based on the fact
that fluid transport equations are of parabolic type pertinent to the diffusion problem. Therefore, we can use the
analogy between the transport phenomena in plasmas and the random walk of Brownian particles which satisfies
the Fokker-Planck equation. For this purpose, fluid parameters such as particle density, energy density, etc, can be
represented as a weighted density of test particles, and we specify the coefficients of the Fokker-Planck equation
in accordance with the transport coefficients of the original equation. Such a Monte Carlo approach to diffusion-
like equations is a conventional computational method. At the same time, the problem of plasma transport has
a specific feature connected with a strong anisotropy of transport coefficients: parallel and perpendicular heat
conductivity coefficients differ by several orders of magnitude. It is an essential difficulty to any numerical
method applied to transport equations in real space coordinates. Therefore, in two-dimensional (2D) [2] and
3D [3] modeling of plasma transport with finite-difference methods a system of magnetic flux coordinates is used
where one of the coordinates (flux label) remains unchanged along the magnetic field lines. Such a coordinate
system allows us to separate the fast process of plasma transport along the magnetic field from the slow cross-field
transport into different coordinates and therefore to avoid numerically induced cross-field transport. However,
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in a general case of the magnetic field topology, it is impossible to introduce a single valued flux label. For
this general case, a Multiple Coordinate System Approach (MCSA) has been proposed in Ref. [1] where sets of
magnetic coordinates (x1, x2, x3) such that

h · ∇x1 = h · ∇x2 = 0 (1)

(here h is a unit vector along the magnetic field) are introduced independently in different subdomains. These
coordinate sets do not have simple periodicity properties, like flux coordinates. However, this absence of simple
periodicity does not affect the accuracy of Monte Carlo procedures where the coordinates of test particles can
be accurately transformed from one local magnetic coordinate set (LMCS) to another if the particle travels to
the next (previous) spatial subdomain. For this purpose the Interpolated Cell Mapping (ICM) technique is used
where high accuracy of coordinate transformation is achieved by means of bi-cubic splines. Based upon MCSA,
the Monte Carlo code E3D has been developed and applied to the problem of heat conductivity in the Dynamic
Ergodic Divertor (DED) of the tokamak TEXTOR [1]. This code has been successfully benchmarked with a 3D
finite-volume code BoRiS [4] in the case of a single island geometry. MCSA is also an essential part of a different
Monte Carlo procedure, Stochastic Mapping Technique (SMT), which is used to solve the drift kinetic equation
in the long-mean-free-path regime in toroidal fusion devices [5].

In [6] we proposed some optimizations of the coordinate system for the stellarator case. Here, we present
further optimisation of the numerical procedure which improves the efficiency of the algorithm fundamentally:
The restriction on the time step in Monte Carlo is obvious - a single particle step must be small compared to
the gradient length of the diffusion coefficient. Here, the parallel diffusion coefficient depends on both plasma
and magnetic field parameters. The plasma parameter dependence comes through the non-linear parallel heat
conduction, whereas the magnetic field dependence comes through h3 and the metric determinant. To allow
for long parallel steps, magnetic field dependencies must be eliminated. We achieve this in two steps: first, the
longitudinal coordinate x3 of the local magnetic coordinates is modified in such a way that in the new coordinate
system the metric determinant and contra-variant components of the magnetic field scale along the magnetic field
with powers of the magnetic field module (like in Boozer flux coordinates) (Section 2). Second, we introduce
specific weights of the test particles (Section 3).

2 New parallel coordinate

Let us recall the main ideas of Refs. [1], [6]. Formally, in fluid dynamics we deal with this convection-conduction
differential equation for some generalised ”fluid quantity” u in the form of a conservation law:

∂u

∂t
= ∇ · (D · ∇u − Vu) − νu + Su = −∇ ·F − νu + Su, (2)

D = D⊥I + (D‖ − D⊥)hh, F = −D · ∇u + Vu, (3)

where D and I are diffusion and unit tensors respectively, h is the unit vector along the magnetic field, and F is
a flux density, D⊥ and D‖ are the anomalous (usually constant) perpendicular and classical parallel generalised
diffusion coefficients.

In general curvilinear coordinates xi equation (2) can be written in the following form:

∂u

∂t
− 1√

g

∂

∂xi

√
g

(
Dij ∂u

∂xj
− V iu

)
= S − νu. (4)

Here, g is the metric determinant and Dij is the diffusion tensor appropriate for u,

Dij =
[
D⊥gij +

(
D‖ − D⊥

)
hihj

]
, (5)

where gij = (∇xi) · (∇xj) and hi = h · ∇xi are contravariant components of the metric tensor and of the unit
vector along the magnetic field, respectively. If we choose a coordinate system like (1) (in which the magnetic
field has only one nonzero component), we guarantee the separation of the parallel and perpendicular fluxes (i.e.
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if h1 = h2 = 0, we have a contribution from D‖ in D33 only). Here, the parallel diffusion coefficient depends
on both plasma and magnetic field parameters:

Dij
⊥ = D⊥

[
gij − (

h3
)2

δi
3δ

j
3

]
, D33

‖ = D‖
(
h3

)2
, (6)

V i
⊥c = V⊥ · ∇xi +

1√
g

∂

∂xj

√
gDij

⊥ , V 3
‖c = V‖h3 +

1√
g

∂

∂x3

√
gD33

‖ . (7)

The problem arises near the inner boundary of the domain: here there is a high constant temperature resulting in
very large parallel heat conduction, while the characteristic length of the magnetic field is one period or even the
distance between the coils, and this distance restricts the parallel jump of a particle. This means, that reproducing
this constant temperature numerically will be very CPU intensive.

To eliminate the effects of magnetic field dependence in the last term in the second part of Eq.(7), let us
introduce the new parallel coordinate as follows,

x3
(m) = S(m)

ϕ∫

ϕ
(m)
min

dϕ′ (B)2

Bϕ
+ ϕ

(m)
min. (8)

Here, the integration is along the magnetic field line, x1 = const, x2 = const (thus, ϕ = x3), B is the magnetic
field module, Bϕ = B3 - contra-variant toroidal (= parallel) component of the magnetic field, ϕ

(m)
min is the lower

boundary of the domain of m-th Local Magnetic Coordinate System (LMCS). The scaling factor which keeps the
new coordinate in the fixed range [ϕ(m)

min, ϕ
(m)
max] is

S(m) =
(
ϕ(m)

max − ϕ
(m)
min

)



ϕ(m)
max∫

ϕ
(m)
min

dϕ′ (B)2

Bϕ




−1

, (9)

where ϕ
(m)
max is the upper boundary of the domain of m-th LMCS. One should now recall the property of the

Jacobian of LMCS to scale inversely with B3 (due to Gauss’ law) in order to check that

∂

∂x3
(m)

√
g

(
h3

)2
= C(x1, x2)

∂

∂x3
(m)

1
B3

(
h3

)2
= C(x1, x2)

∂

∂x3
(m)

Bϕ

(B)2
∂x3

(m)

∂ϕ
= 0, (10)

where C(x1, x2) is some constant (independent on x3
(m)). Here the derivative over ϕ is taken assuming x1 and x2

constant (along the magnetic field line). We see that in the case of constant temperature, the last term of second
part of Eq.(7) is zero.

The coordinates x3 in neighboring LMCS are coupled by the following rule,

x3
(m) − ϕ

(m)
max

S(m)
=

x3
(m+1) − ϕ

(m+1)
min

S(m+1)
. (11)

It should be noted, we do not modify our “reference cut” used in Ref. [6] to build the coordinate system - it
remains the surface ϕ = const.

Let us check here the properties of the new coordinates. Here we notate with xi “old” local magnetic coordi-
nates where x1 and x2 are magnetic coordinates which satisfy the magnetic differential equation (1) and coincide
with local magnetic coordinates on the reference cut and x3 = ϕ. “New” local magnetic coordinates will be
denoted here with xi

new . These coordinates differ only by the third coordinate, x1
new = x1, x2

new = x2 and x3
new

is given by (8). It follows from (8) that

B3
new ≡ B · ∇x3

new =
∂(x1, x2, x3

new)
∂(x1, x2, ϕ)

Bϕ = S(m)(B)2 (12)
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Therefore,

h3
new =

B3
new

B
= S(m)B. (13)

Due to ∇ · B = 0 quantity
√

gnewB3
new is constant along the magnetic field lines. Therefore

√
gnew scales as

(1/B)2 along the field lines, like in Boozer coordinates. Using (12) we obtain

√
gnew =

√
g

∂(x1, x2, x3)
∂(x1

new , x2
new , x3

new)
=

√
g

∂(x1, x2, x3)
∂(x1, x2, x3

new)
=

√
gBϕ

S(m)(B)2
(14)

where the numerator in the last expression is constant on the field line. Thus it is sufficient to compute it on the
reference cut,

√
gBϕ = R

∂(R, Z, ϕ)
∂(x1, x2, x3)

Bϕ =
∂(R, Z, ϕ)
∂(x1, x2, ϕ)

B̂ϕ =
[

∂(R, Z)
∂(x1, x2)

B̂ϕ

]
ϕ=ϕm

=
S(m)

λ
, (15)

where B̂ϕ is the physical ϕ-component of B. We introduced a quantity λ which is independent on the coordinate
x3 as follows,

λ(x1, x2) =
(

∂ (R, Z)
∂ (x1, x2)

)−1 S(m)

B̂ϕ

. (16)

Thus,
√

gnew =
1

λ(B)2
(17)

Since in the following we use only new coordinates, we omit subscript new everywhere.

3 Re-weighting of particles

To perform a Monte Carlo procedure for Eq.(2), u is expressed through the density of test particles, nt, as follows,

u = wnt, w =
1
Nt

∫
d3r u0, (18)

where w is the weight of a single test particle, Nt is a total number of test particles at the beginning of evolution,
and u0 is an initial distribution of u. The normal component of the flux density is represented as

Fn ≡ F · dS
dS

= w
∆N

dS∆t
, (19)

where dS is an area element (dS its module), ∆N is number of test particles passing through this area element
per time ∆t. The sink term −νu is modeled by removal of particle fraction ν∆t during the time step ∆t. The
source Su is modeled by adding ∆N particles in the volume element d3r:

∆N =
Sud3r∆t

w
. (20)

If the total input flux (input power) through the boundary, P , is prescribed, the number of test particles added in
the system per time step ∆t is

Nadd =
∫

dS
∆N

dS
=

∆t

w

∫
dSFn =

∆t

w
P. (21)

Sometimes it is useful, to re-define the weights of the test particles in the MC procedure, (e.g., to adjust the
time step of the random process to the local plasma and magnetic field parameters which place very different
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restrictions on the time step near the inner boundary and near the wall). In this case, the unknown u is expressed
through the new unknown ũ as follows,

u(r) = µ(r)ũ(r), (22)

where µ(r) is some scalar function of coordinates. We re-define the diffusion tensor, convection velocity and
conditional sink rate as follows,

D̃ = µD, Ṽ = µV − D · ∇µ, ν̃ = µν, (23)

so that the right hand side of Eq. (2) preserves its form,

µ
∂ũ

∂t
= ∇ ·

(
D̃ · ∇ũ − Ṽũ

)
− ν̃ũ + Su, (24)

and, in particular, the flux density preserves its value,

F = −D · ∇u + Vu = F̃ = −D̃ · ∇ũ + Ṽũ. (25)

Since we are interested only in the stationary solution, we replace the physical time t by the “iteration time” τ so
that (24) takes the form

∂ũ

∂τ
= ∇ ·

(
D̃ · ∇ũ − Ṽũ

)
− ν̃ũ + Su. (26)

Since Eq. (26) is of the same form as Eq. (2), the Monte Carlo realization is similar,

ũ = w̃ñt, w̃ =
1
Nt

∫
d3r ũ0. (27)

In particular, the normal component of the flux density is given by

Fn = F̃n ≡ F̃ · dS
dS

= w̃
∆N

dS∆τ
, (28)

i.e. the number of test particles passing through the area element dS per “iteration time” interval dτ , normalized
by the area element, dS and multiplied by the new weight. The fraction of particles removed per “iteration time”
interval dτ is ν̃∆τ , and the number of particles added to the volume element d3r per “iteration time” interval dτ
is

∆N =
Sud3r∆τ

w̃
. (29)

The number of test particles added to the system per “iteration” time step ∆t in case of a prescribed input flux is

Nadd =
∫

dS
∆N

dS
=

∆τ

w̃

∫
dSFn =

∆τ

w̃
P. (30)

In curvilinear coordinates, test particles are described by a pseudo-scalar density, N =
√

g ñt,

∂N
∂τ

=
∂

∂xi

[
∂

∂xj
D̃ijN − Ṽ i

c N
]
− ν̃N + S. (31)

Here,

S =
√

gSu, Ṽ i
c = Ṽ i +

1√
g

∂

∂xj

√
gD̃ij = Ṽ i

⊥c + Ṽ i
‖c. (32)

In the last expression in (32), the terms containing V i
⊥ = V⊥e · ∇xi and Dij

⊥ were grouped in Ṽ i
⊥c, while the

terms with V i
‖ = V‖eh

i and Dij
‖ were grouped in Ṽ i

‖c.
Let us introduce a particular form of the scaling factor µ which will serve two purposes:

c© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Contrib. Plasma Phys. 44, No. 1-3 (2004) / www.cpp-journal.org 23

• The parallel diffusion tensor component, D̃33
‖ , will be dependent on x3 only through a dependence of plasma

parameters, but not through the geometrical terms, namely,
√

g and h3. The parallel effective convection
velocity component, Ṽ 3

‖c, will contain no derivatives of the geometrical terms, namely
√

g and h3, and have

no terms with D‖e which depend on x3 through the geometrical terms. This removes the limitation on the
parallel step by the magnetic field scale in this direction;

• The parallel effective convection velocity will not contain the derivatives of the density, thus, reducing the
influence of the statistical noise in this quantity on the Monte Carlo process.

Both of these conditions are satisfied by

µ =
c0ne

(B)2
, (33)

where c0 is some constant which we are free to choose. Thus, using (13) and (17) we obtain

D̃33
‖ = c0neD‖λ

√
g(h3)2 = c0neD‖S2

(m) =
2
3
c0κ‖eS

2
(m), (34)

where S(m) is independent on x3. For the effective parallel convection velocity using Eq. (23), Eq. (32) and

V‖e = V‖ +
D‖
ne

h · ∇ne = V‖ +
2κ‖e

3n2
e

h · ∇ne, (35)

where V‖ is the parallel velocity of density convection (see Ref. [1]), we have

Ṽ 3
‖c = µV‖eh

3 − D33
‖

∂µ

∂x3
+

1√
g

∂

∂x3

√
gµD33

‖ =
c0S(m)

B
neV‖ +

2
3
c0S

2
(m)

∂κ‖e

∂x3
. (36)

Thus, in case of constant temperature along the magnetic field lines, the effective parallel convection velocity Ṽ 3
‖c

is proportional only to the parallel fluid velocity V‖. Moreover, for the steady parallel plasma motion such that

∇ · V‖neh =
1√
g

∂

∂x3

√
gV‖neh

3 = (B)2
∂

∂x3

S(m)

B
neV‖ = 0, (37)

Ṽ 3
‖c is obviously independent of x3.

4 Results for W7-X

Implementation of the new coordinate and re-weighting technique increases the efficiency of the code by about
a factor of 100. Here, we present results for the W7-X magnetic geometry (without real limiters, an artificial
boundary is set on the outer closed magnetic surface). The three equations (continuity and both energy equations)
are implemented completely. The parallel momentum equation currently is implemented in test geometry only,
the additional geometrical terms will be included later. However, no fundamental problems are expected from
them.

We prescribe 10 eV for both temperatures and 1012 cm−3 for density at the outer edge of the plasma. On the
inner boundary, we prescribe 100 eV for temperatures and 1013 cm−3 for density. The profiles are as expected:
the electron temperature reflects the structure of the magnetic field better than the ion temperature and much
better than the density because of their different parallel transport. Indeed, the electron temperature in the island
is almost constant, the ion temperature has a noticeable gradient across the island and the density exibits an even
stronger gradient. The statistical noise in the density profile is stronger than in either temperature, because their
larger parallel transport works like a smoothing filter. The same behaviour can be seen for all sections of the
device. Again, the effect of the different parallel transport is emphasized.
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Fig. 1 Plasma parameter profiles of W7-X (real space).

References

[1] A.M. Runov, D. Reiter, S.V. Kasilov, W. Kernbichler, M.F. Heyn, Phys. Plasmas 8 916-930 (2001).
[2] M. Baelmans, Code improvement and applications of a two-dimensional edge plasma model for toroidal devices.

Preprint Jül-2891, Forschungszentrum Jülich GmbH, March (1994).
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