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Abstract
The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic
plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration
properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with
minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the
transport in complex edge geometries (in particular for W7-X) two possible methods are used.

First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic
coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant
parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then
interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be
solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they
exist) and discretization. All toroidal terms are discretized by finite differences.

Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of
TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The
model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic
coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing
dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport
results in increasingly steep profiles for the respective quantities within the islands.

PACS numbers: 52.55.Dy, 52.55.Rk

1. Introduction

This paper is a review of our work done on three-dimensional
fluid modelling in ergodic magnetic fields using the multiple
coordinate systems approach according to [1–6]. To be able
to deal with very general magnetic configurations, one needs a
correspondingly general numerical tool. The model presented
here is based on local magnetic coordinate systems (LMCSs)
and couples neighbouring systems with high accuracy. The
method has a large variety of applications, mainly in the

a Author to whom any correspondence should be addressed.

stellarator community, but also for tokamaks (e.g. TEXTOR-
dynamic ergodic divertor (DED), DIII-D).

This work was inspired by the idea of the TEXTOR-DED
[7]. Here, one installs a special set of magnetic coils to obtain
additional control over the fluxes in the plasma periphery.
Indeed, the stronger the magnetic perturbation, the larger the
islands on the resonant surfaces, which eventually overlap and
build a so-called ‘ergodic layer’: the behaviour of a field line
becomes stochastic (two originally neighbouring field lines
diverge from each other exponentially with a Kolmogorov
characteristic length LK ), and we obtain a non-zero projection
of the strong parallel heat transport onto the radial direction
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and, therefore, a flattening of the temperature profile—see the
well-known expression from Rechester and Rosenbluth [8]
for the amplification of the radial diffusion because of this
mechanism:

χ(RR)
r = DflD‖e

[
LK ln

(
1

rkθ

(
χ‖e
χ⊥

)1/2
)]−1

, (1)

where Dfl is the field line diffusion coefficient, kθ =
m/r the characteristic perpendicular wave number, LK the
Kolmogorov length, r the minor radius and m is the poloidal
number of the perturbation; χe

‖ , χe
⊥ are the ‘intrinsic’ transport

coefficients arising from the underlying plasma transport. The
advantage of such an ergodic layer lies in the possibility of
improving the conditions for radiation from this region by
flattening the radial temperature profile at some optimal level.

Configurations of this kind are very general: they contain
intact magnetic surfaces, islands, ergodic and open field lines,
and are, in that respect, similar to the edge region of stellarators.
The main problem for transport modelling in such mixed
regions is as follows: the coordinate system must be aligned
to the unstructured magnetic field. Indeed, let us consider
a constant magnetic field in a Cartesian coordinate system
aligned with the field lines. The diffusion tensor here has a
desirable diagonal form, whereas in the case of a misaligned
coordinate system we have non-zero elements everywhere. If
we try to solve our equation in this misaligned coordinate
system numerically, we will have an artificial perpendicular
heat flux proportional to the parallel diffusion coefficient,
leading to the so-called ‘numerical diffusion’. For realistic
plasma edge conditions, the ratio between χ‖ and χ⊥ can be
up to eight orders of magnitude, and the numerical diffusion
becomes a severe problem. The difficulty is obviously
common to all numerical methods, and in practice we are
forced to use the magnetic field line itself as one of the local
coordinate axes.

2. Basic problem

Formally, in fluid dynamics we deal with a convection–
conduction differential equation for some generalized ‘fluid
quantity’ f in vector form

∂f

∂t
−∇·[D⊥∇f +(D‖−D⊥)hh·∇f −(V⊥+hV‖)f ] = S−νf.

(2)
Here, h = B/B is a unit vector along the magnetic field,
D⊥, D‖, V⊥ and V‖ are the anomalous (usually constant)
perpendicular and classical parallel generalized diffusion
coefficients, and perpendicular and parallel convection
velocities, respectively. In general curvilinear coordinates xi ,
equation (2) can be written in the following form:

∂f

∂t
− 1√

g

∂

∂xi

√
g

(
Dij ∂f

∂xj
− V if

)
= S − νf, (3)

where Dij = D
ij

⊥ +D
ij

‖ and V i = V i
⊥ +V i

‖ are diffusion tensors
and velocities appropriate for f ,

D
ij

⊥ = D⊥(gij − hihj ), D
ij

‖ = D‖hihj ,

V i
⊥ = V⊥ · ∇xi, V i

‖ = V‖hi.
(4)

Here, g, gij = (∇xi) · (∇xj ) and hi = h · ∇xi are the
determinant and contravariant components of the metric tensor,
and of the unit vector along the magnetic field, respectively. If
we choose a coordinate system in which the magnetic field has
only one non-zero component, we guarantee the separation of
the parallel and perpendicular fluxes (i.e. if h1 = h2 = 0, we
have a contribution from D‖ in D33 only).

The question now is how to build such a coordinate system.
We begin by choosing a surface (called the reference cut)
which intersects all field lines of interest and draw some
reasonable (e.g. Cartesian) mesh on this cut. We now trace
field lines through the mesh lines. The surfaces we obtain
are our coordinate surfaces. It should be noted that a similar
procedure is used for building Clebsch stream functions (see,
e.g. [9]). The metric of this system can be obtained by field
line tracing: indeed, the real space coordinates are linked with
these magnetic coordinates by field line tracing, and we can
extend this procedure to calculate the relevant transformation
matrix (see [4, 6]). These coordinates can be used locally. By
this, we mean that more than one reference cut (and, therefore,
multiple coordinate systems) can be used, in order to keep the
scope of a single system well below the Kolmogorov length.
The price for simplicity of the representation of the magnetic
field in these cordinates is clear: the system is non-periodic,
i.e. the coordinate surfaces of neighbouring systems overlap
arbitrarily at the interface between the two systems.

If we try to solve the problem by interpolation, we induce
numerical diffusion of the same nature as before: an artificial
contribution of the parallel flux to the radial transport. For
instance, if one were to pass a beam (a δ-function) through
such a system, one would obtain a response in all four
corners of the cell on the interface between two neighbouring
coordinate systems, and then on the next interface it would
spread further. There are two proposed methods for dealing
with this phenomenon.

The first is to optimize the mesh on the reference cut, i.e. to
produce it by field line tracing itself. Indeed, if we could build
a mesh consisting of footprints of field lines only, we would
solve the problem. This idea is good for the field lines starting
and ending on the wall, or for closed field lines. Any other field
line can be treated as ‘almost closed’ as long as the following
criterion of the negligibility of the numerical diffusion is
fulfilled: � � L‖

√
χ⊥/χ‖, where � is the excursion between

the start and end points as measured on the cut andL‖ ≈ 2πRN

is the distance between the same points measured along the
field line with N ≈ 100 toroidal turns. We select only those
field lines which come within � = 1 mm of closing upon
themselves and close them artificially. Only such field lines
are involved in building the mesh. This minimizes the induced
numerical diffusion to about 10−4 m2 s−1. The penalty one
pays for this method is an unstructured mesh.

The second idea is to switch to a Monte Carlo method with
an appropriate mapping technique, such as the one described
below. In this case, the problem becomes one of passing a
particle from one coordinate system to another, much like the
baton in a relay race, instead of mesh re-interpolation.

3. Finite-difference ansatz

The basic set-up for the numerical realization of the first
approach [4] is as follows: we choose 20 reference cuts per
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(a) (b)

Figure 1. (a) Triangulated Poincaré plot for the W7-X configuration; (b) corresponding temperature profile.

toroidal turn and build the unstructured mesh using ‘almost
closed’ field lines or lines hitting the wall, and discretize our
equations with a finite-difference scheme.

The next question to answer is about how local a single
coordinate system can be. One must be able to write and
discretize the divergence of gradients within its scope. In
other words, it must contain the whole stencil we use for
the discretization. Thus, our local coordinate system is a
moving patch centred on the point of interest and covering three
neighbouring reference cuts simultaneously. The advantage of
this system is obvious: if we switch the perpendicular diffusion
off, we will use only the three points in our scheme located
along the same field line, at its intersections with the reference
cuts. It means that we achieve the desirable separation between
parallel and perpendicular transport in the scheme.

The rest is more or less conventional work with an
unstructured mesh: the perpendicular problem is isotropic,
and the choice of the numerical method is uncritical. We
build the mesh with the help of a modification of Delaunay
triangulation—a method commonly used in finite elements
calculations (see figure 1(a)). The corresponding electron
temperature profile is presented in figure 1(b).

4. Monte Carlo method

In this approach we model a diffusion-like equation using the
random walk of Brownian particles. It is important to stress
here the difference from kinetic Monte Carlo modelling used in
the low collisionality regime: in that case the fastest time scale
corresponds to the regular test particle drift motion described
by ordinary differential equations with smooth coefficients,
while stochastic changes of particle velocity which model slow
collisional diffusion in velocity space are small and can be
treated as a perturbation in the lowest order. Therefore, high-
order integrators are useful for that problem. However, in the
case of diffusion-dominated transport, high-order integration
is a nontrivial numerical problem (see, e.g. this book [10]).

For example, let us consider a one-dimensional Fokker–Planck
equation

∂f

∂t
= ∂2

∂x2
Df − ∂

∂x
Vcf

and the equivalent Ito stochastic differential equation

dx = Vc dt +
√

2D dW(t),

where W is a so-called Wiener process. The simplest method
to sample stochastic trajectories is the first-order integrator
similar to the Eulerian scheme for ODEs: all differential
operators are replaced by differences:

�x = Vc�t +
√

2D�tξ, where 〈ξ〉 = 0, 〈ξ 2〉 = 1.

(5)
The second-order integrator is already much more complex
(see, e.g. [11]):

�x = Vc�t +
√

2D�tξ +
√

D
∂
√

D

∂x
�t(ξ 2 − 1)

+

(
Vc

∂
√

D

∂x
+

√
D

∂Vc

∂x
+ D

∂2
√

D

∂x2

)
�t3/2

√
2

ξ

+

(
Vc

∂Vc

∂x
+ D

∂2Vc

∂x2

)
�t2

2
. (6)

One can see that the number of terms we need grows with the
order of the scheme much faster than for ordinary differential
equations. In the three-dimensional case, the number of terms
for such schemes becomes so large that the calculation effort
becomes unacceptable. Furthermore, in our nonlinear case,
the transport coefficients D and Vc are sampled numerically
as well. Therefore, they are noisy, and calculation of their
higher order derivatives is undesirable. Hence, we are forced
to restrict ourselves to the simplest first-order (so-called
Euler–Maruyama) integrator. A special set of optimized local
magnetic coordinates discussed in section 6 allows us to keep
both time-step and numerical errors acceptable for such a
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scheme: in these coordinates, the main limitation of the time
step which comes from the fastest parallel transport timescale is
relaxed by making corresponding transport coefficients slowly
varying along the field lines. (A much stronger limitation
of the time step due to the parallel transport, which must
accurately follow the field lines, does not appear in our
magnetic coordinates.)

The outline of the algorithm is as follows: we rewrite the
convection–conduction equation (3) in a Fokker–Planck form:

∂N

∂t
− ∂

∂xi

(
∂

∂xj
DijN − V i

c N

)
= √

gS − νN, (7)

where N = √
gf and

V i
c = V i +

1√
g

∂

∂xj

√
gDij , (8)

choose some appropriate initial profile and fill the computation
domain with test particles distributed in accordance with this
profile. On a time step, every particle gets a kick (random
for diffusion and regular for convection), and the distribution
evolves. The algorithm can be understood in terms of Green’s
functions: if a lot of particles are started at the same point
and counted after a time interval �t , their distribution gives
a statistical approximation to the equation response to a
δ-function. Therefore, taking starting points distributed in
accordance with the initial profile, the convolution integral of
this response function with the initial distribution is sampled.
This integral is the desired solution.

The conditional sink, νf , and source, S, terms in (3) are
modelled during a single time step �t by terminating test
particle orbits with probability ν�t � 1 and adding new
particles with the distribution S�t , respectively.

It should be noted that two different time steps are used
here. The first one, �t , is the time for a single particle jump
(entering equation (5)), which is defined by the gradients of
plasma parameters (see also section 6) or by the distance to
the wall. The second one, �tr , is the actualization time of
transport coefficients: since transport coefficients are nonlinear
functions of plasma parameters, they are adjusted after time
intervals �tr � τr , where τr is a typical profile relaxation
time. Within �tr plasma parameters are kept constant, and time
averaging is performed. The magnitude of this time interval is
strongly problem dependent: if we are interested in a true time
evolution, it has to be comparable with �t . In the limiting
case of a linear problem (with fixed transport coefficients) it
can be made very large. As long as we are looking for a
steady-state solution, �tr should be small enough to provide
the convergence for our iterations (normally, we use a fraction
of the radial relaxation time).

5. Interpolated cell mapping

As mentioned before, a particular LMCS is used within its own
domain. For example, for stellarator modelling such a domain
is normally the toroidal magnetic field period. Whenever
a test particle travels to the neighbouring LMCS, we have
to perform a transformation of the pair of ‘perpendicular’
coordinates (which label field lines in a given LMCS) with high
accuracy to avoid artificial cross-field transport induced by

fast parallel transport. These two coordinates are actually the
coordinates on the LMCS reference cut plane of its intersection
(or footprint) with the field line passing through the point of
interest. Thus, the new coordinates are the coordinates of the
same field line’s intersection point but with the reference cut
plane of the neighbouring LMCS. The problem is solved by
means of an interpolated cell mapping procedure [1, 12, 13].
The main idea here is to trace field lines starting in the
knots of the two-dimensional mesh on the reference cut of
the old LMCS (e.g. with the GOURDON code) and use
interpolation for the points in between. In other words, real
space coordinates of the field line footprint on the reference cut
of a new LMCS are treated as two two-dimensional functions of
its starting coordinates on the old LMCS reference cut. These
functions are given by interpolation of pre-computed data. The
accuracy needed depends on the ratio between the parallel and
perpendicular transport. The estimations show that bicubic
spline interpolation provides enough accuracy for acceptable
mesh sizes (see appendix A in [1]).

For stellarator applications coordinates have been
optimized in order to make the SOL region in these coordinates
close to a rectangle with one of the sides being the boundary
with the core plasma. Indeed, the reference cut mesh does not
have to be Cartesian—it is more natural to choose as coordinate
lines a family of curves given by a linear interpolation between
the cross section of the last closed magnetic surface on the
reference cut and some curve which smoothly envelops the
cross section of the wall. In [4], this last curve was represented
by another magnetic surface outside the island region. The
variational moments equilibrium code (VMEC) angle-like
variable u could be chosen as the second family of curves (as
shown in figure 2(a)). The transformation between Cartesian
coordinates and this new mesh is given in the form of a Fourier
expansion over VMEC angles. The inverse transformation
and the calculation of the metric tensor of this system is only
possible numerically (see [4]).

The results in non-ergodic regions are very good: the
Poincaré plots obtained with mapping and field line tracing
are optically identical as one can see from the overlay of
field line tracing and mapping on figure 2(b). After 600
field periods, one gets a deviation of only 8 × 10−3 cm (to
be compared with the thickness of the SOL being several
centimetre).

In ergodic regions, the exponential divergence of the
magnetic field lines amplifies both the numerical and physical
perpendicular diffusions and the estimation presented in
appendix A of [1] remains valid.

6. Optimized coordinates

The restriction on the time step in Monte Carlo is clear: a
single particle step must be small compared to the gradient
length of the diffusion coefficient. In equation (7), non-
zero components of the parallel diffusion tensor and effective
convection velocity depend on both plasma and magnetic field
parameters:

D33
‖ = D‖(h3)2, V 3

‖c = V‖h3 +
1√
g

∂

∂x3

√
gD33

‖ . (9)
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(a) (b)

Figure 2. (a) Mesh on the reference cut optimized for W7-X; (b) overlap of mapping and field-line tracing for this mesh [4].

The plasma parameter dependence comes through the non-
linear parallel diffusion coefficient, D‖, whereas the magnetic
field dependence comes through h3 and the metric determinant.
In the case of the heat conductivity equation, the problem arises
near the inner boundary of the domain: here a high constant
temperature results in a very large parallel heat diffusion,
while the characteristic length of the magnetic field is one
period or even the distance between the coils. This means
that reproducing this constant numerically will be very CPU
intensive. To allow for long parallel steps, magnetic field
dependences must be eliminated. This is done in two steps.

As a first step, assuming toroidal reference cuts,
ϕ = const, we define the third, ‘parallel’, coordinate as
follows:

x3 = S(m)

∫ ϕ

ϕ
(m)

min

dϕ′ (B)2

Bϕ
+ ϕ

(m)

min. (10)

Here, the integration over the toroidal angle ϕ is performed
along the magnetic field line, x1 = const, x2 = const, B

is the magnetic field modulus, Bϕ the contra-variant toroidal
component of the magnetic field and ϕ

(m)

min is the lower boundary
of the domain of the mth LMCS. The scaling factor which
keeps the new coordinate in the fixed range [ϕ(m)

min, ϕ
(m)
max] is

S(m) = (ϕ(m)
max − ϕ

(m)

min)

(∫ ϕ
(m)
max

ϕ
(m)

min

dϕ′ (B)2

Bϕ

)−1

, (11)

where ϕ
(m)
max is the upper boundary of the domain of the mth

LMCS. As follows from (10), the ‘parallel’ component of
the magnetic field, B3 = ∂(x1, x2, x3)/∂(x1, x2, ϕ)Bϕ , scales
as the square of the magnetic field modulus (B)2 along the
magnetic field lines. In addition, due to Gauss’ law,

div B = 1√
g

∂

∂x3

√
gB3 = 0,

the Jacobian scaling along the field lines is
√

g ∼ (B)−2.
Therefore, the combination (h3)2√g is constant on the field
line and, as a result, its derivative in the convection velocity
V 3

c is zero.
As a second step, the coefficient D33 itself should be made

‘almost constant’ (it would be an exact constant for constant

temperature). This is achieved by re-definition in equation (7)
of the unknown f and of the transport coefficients Dij and V i

c :

f = µf̃ , D̃ij = µDij , Ṽ i
c = µV i

c , (12)

where µ(r) is some scalar function of the coordinates. Let us
introduce a particular form of the scaling factor µ, which will
serve two purposes:

• The new parallel diffusion tensor component, D̃33
‖ , and the

derivative term in the new parallel effective convection
velocity component, Ṽ 3

‖c, will be dependent on x3 only
through a dependence on plasma parameters, but not
through the geometrical terms, namely,

√
g and h3. This

removes the limitation on the parallel step by the scaling
of the magnetic field in this direction.

• The parallel effective convection velocity will not contain
density derivatives, thus reducing the influence of
statistical noise in this quantity on the Monte Carlo
process.

Both these conditions are satisfied by

µ = c0ne

(B)2
, (13)

where c0 is some constant which we are free to choose (see [6]).
The resulting efficiency of the code is improved by about two
orders of magnitude.

7. Basic transport equations of E3D

The code E3D (ergodicity in three dimensions) combines all
the ideas mentioned above. The physics model used in the
code is the usual set of Braginskii equations. They are all of
the convection–conduction form and, therefore, can be solved
by means of the multiple coordinate systems approach.

The continuity equation is presented in its standard form
(ni = ne ≡ n):

∂n

∂t
+ ∇ · (hV‖n + V⊥n) = Sn − νnn, (14)
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where

V⊥ ≡ D⊥
n

(h h · ∇n − ∇n).

It is convenient to work with total parallel momentum,
and the sum of the ion and electron momentum equations is
rewritten in this form (Vi = Ve ≡ V; p‖ ≡ mnh · V):

∂p‖
∂t

+ ∇ · ((V⊥V + hV‖V )p‖ − D⊥V ∇p‖

−(D‖V − D⊥V )hh · ∇p‖) = SV − νV p‖. (15)

Here,

V⊥V ≡
(

1 − ηA

mnD⊥

)
V⊥, V‖V ≡ V‖ +

4η0

3mn2
h · ∇n,

D⊥V ≡ ηA

mn
, D‖V ≡ 4η0

3mn
, N ≡ h · ∇h,

νV ≡ − V⊥ · N +
η0

mn
(div h)2 +

2

3mn
h · ∇η0div h,

SV ≡ − h · ∇p + h · FS + mnV⊥ · (V⊥ · ∇)h

−
(

2

3
h · ∇ + div h

)
η0(3V⊥ · N + divV⊥),

where p = n(Ti + Te) is the plasma pressure, FS an
external force density and η0 and ηA are classical parallel and
anomalous shear viscosity coefficients, respectively. All the
source terms here are of a purely geometrical nature: imagine a
particle, representing a ‘piece of parallel momentum’ jumping
across the magnetic field, the momentum it carries is no longer
parallel to the local field line. These terms account for this
effect.

Heat conductivity equations for species α = e, i are
rewritten for the unknown internal energy:

∂uα

∂t
+ ∇ · ((V⊥α + hV‖α)uα − D⊥α∇uα

−(D‖α − D⊥α)hh · ∇uα) = Sα − ναuα. (16)

Here,

uα ≡ 3

2
nTα, V⊥α ≡

(
1 − D⊥α

D⊥

)
V⊥,

V‖α ≡ V‖ +
1

n
D‖αh · ∇n, D⊥α ≡ 2κ⊥α

3n
, D‖α ≡ 2κ‖α

3n
,

κ⊥α and κ‖α are anomalous perpendicular and classical parallel
heat conductivity coefficients.

The three equations (14)–(16) are implemented in E3D
completely, and the parallel momentum equation (15) is
implemented in a test (one-dimensional) geometry only. The
additional geometrical terms will be included later.

Complex codes require extensive benchmarking as
a systematic method to eliminate mistakes. Cross-
benchmarking between different codes is the most suitable
approach. The electron heat conductivity equation in a single
island geometry has been tested. After several simplifications,
the problem has been reduced to a linear two-dimensional
problem and solved with E3D, BoRiS (which is a three-
dimensional finite volume code) and pre-packaged subroutines
from the NAG library. Very good agreement for all three codes
has been demonstrated [2].

8. TEXTOR-DED

In TEXTOR-DED one installs a special set of coils to obtain
additional control over the fluxes in the plasma periphery.
The achievement of a well-developed ergodicity in this
configuration seems problematic, since in reality one obtains
a very complex mixture of island remainders, ergodic and
laminar field lines. This provides some contribution from
the parallel heat flux into radial transport and, therefore, a
flattening of the temperature profile. The price is clear:
the heat flux on the limiter concentrates in several stripes
produced by ‘fingers’—regions where the field lines starting
on the wall enter the ergodic field region (there can be four to
eight stripes depending on the plasma current; see figure 14
in [5]). One can also see the calculated electron temperature
distribution for a typical case from TEXTOR-DED, in figure 13
in [5]. As expected, it reflects the structure of the magnetic
field. This leads to the idea of smearing out the ‘hot stripes’
by means of dynamical sweeping. A dynamical operation
mode using an ac power supply for the perturbation coils will
change the magnetic field pattern and by this the electron
temperature distribution. The dynamical operation and its
time-varying electron temperature distribution results in time-
varying limiter power loads. This method is planned for
TEXTOR (hence the name dynamic ergodic divertor) with a
wide range of frequencies (from 50 Hz to 10 kHz). E3D in
its present form is able to work in a quasi-static approximation
only (this means that the re-building of plasma profiles is faster
than the variation of the magnetic field; this is valid up to about
100 Hz). In this case, one can treat the dynamic situation as a
sequence of steady-state solutions. The time-averaged effect,
even in the lowest frequency limit, is clear: the peak power
load is reduced by almost one order of magnitude even in the
low-frequency limit of 50 Hz (cf figures 14 and 15 of [5]).

In these realistic cases, the field is only partially ergodic.
In this work [1] we asked a somewhat academic question:
how well does the classical Rechester–Rosenbluth formula (1)
describe the situation? Formally, one can calculate the
‘effective heat conductivity’ by dividing the calculated heat
flux by the temperature gradient (using the angle-averaged
values). It should be noted that only the parallel component
of the total radial heat flux is needed for this comparison. The
results for linear (without the temperature dependence of the
parallel heat conduction) and nonlinear (taking account of this
dependence) cases are presented in figure 3. One can see
that the RR formula provides the correct order of magnitude
estimate up to (but not including) the ‘laminar zone’, i.e.
in the region without direct contact with the wall. In the
neighbouring (laminar) region, another mechanism dominates:
not the ‘braiding’ of field lines, but the direct contact of the
field lines with the wall.

9. Effect of noise-like static magnetic field
perturbations on the radial electron heat
conductivity

The existence of internal transport barriers (ITBs) is one of
the important features of anomalous transport, which is under
investigation in present-day tokamak experiments. ITBs have
been observed in experiments with reversed shear profiles.
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(a) (b)

Figure 3. Comparison of effective diffusion coefficient (green) and Rechester–Rosenbluth prediction (red) versus minor radius (a—linear
case, b—nonlinear case) [1].

(a) (b)

Figure 4. Poincaré plots for different amplitudes of perturbation: (a) ε = 2.6666 × 10−4; (b) ε = 1.3333 × 10−4 (overlapping criterion
violated) [3].

A particular case is the RTP tokamak, where electron ITBs have
been observed around low-order rational magnetic surfaces
in the case of a monotonic safety factor profile [14]. In [3],
the possibility of electron ITBs in the presence of additional
radial transport due to static randomly phased magnetic
field perturbations with a broad spatial spectrum has been
investigated. For this, a model geometry consisting of a
straight periodic cylinder with a rotational transform angle,
ι = ι(r) = 1/q(r), monotonically changing with radius has
been assumed. The perturbing magnetic field was noise-like,

Br =
∞∑

m,n=−∞
bm,n cos(mθ − nϕ + αm,n), (17)

where θ , ϕ = z/R and 2πR are poloidal and the toroidal
angles, and the cylinder period, respectively. Here, Fourier
harmonics are randomly phased with respect to each other with
phases αn,m. For the modelling, the following spectrum for the
magnetic field perturbation has been used,

bm,n = ε (m/m̄)γ � (|m| − m̄) � (|n| − n̄) , (18)

where ε denotes the amplitude of the perturbation. Here, m̄ 

1, n̄ 
 1 are poloidal and toroidal widths of the spectrum,
respectively, and � is the Heavyside step function. Such a
broad spectrum represents short scale turbulent perturbations

of the magnetic field, which have their spectral maximum
located in the region of large perpendicular wavenumbers.

If the perturbation amplitude is large enough, the magnetic
field becomes ergodic over the whole radius due to the
overlapping of the islands formed by various harmonics
at different resonant surfaces with ι(r) = n/m. As a
consequence of parallel heat transport along such braided
magnetic field lines, the ‘anomalous’ heat conductivity
appears.

If the perturbation amplitude is moderate, regions where
intact KAM surfaces exist or, at least, the diffusion of field
lines is reduced, appear around low-order rational magnetic
surfaces (see figure 4 where the Poincaré plots for two different
values of the perturbation amplitude ε are shown). This is
due to the fact that the spacing between radial positions of
resonances from the limited range of wavenumbers, |m| � m̄,
|n| � n̄, is not homogeneous and is much larger than average if
one of the neighbouring resonances is a low-order resonance.
The criterion for the formation of such a region around a low-
order resonant radius with ι(r) = n0/m0 is

εR(m0m̄)3/2

∣∣∣∣dι(r)

dr

∣∣∣∣ log1/2

(
m̄

m0

)
< 1. (19)

Such a criterion is valid for γ > 1
2 . Taking γ = 1, the E3D

code has been used to calculate radial temperature profiles
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Figure 5. (a) Ratio between effective diffusion calculated with E3D and intrinsinc value; (b) temperature profiles (red—ε = 2.6666 × 10−4,
green—ε = 1.3333 × 10−4) [3].

Figure 6. Results for W7-X geometry: electron and ion temperatures, plasma density [6].

for the two cases shown in figure 4 and to evaluate from
these profiles the effective radial heat diffusion coefficient. If
the perturbation is small enough, the effective heat diffusion
drops to its intrinsic value and a barrier-like temperature profile
develops around the low-order rational ι point (ι = 1

2 , see
figure 5). This mechanism is, therefore, a candidate for
the creation of ITBs.

10. W7-X

In this section, we present results for the W7-X magnetic
geometry (without real divertor plates, an artificial boundary
being set on the outer closed magnetic surface instead, [6]). We
prescribe 10 eV for both temperatures and 1012 cm−3 for the
density at the outer edge of the plasma. On the inner boundary,
we prescribe 100 eV for the temperatures and 1013 cm−3

for the density. As expected, the electron temperature

reflects the structure of the magnetic field better than the ion
temperature and much better than the density because of the
differences in the parallel transport (see figure 6). Indeed,
the electron temperature in the island is almost constant, the
ion temperature has a noticeable gradient across the island
and the density demonstrates an even stronger gradient. The
statistical noise in the density profile is stronger than in either
temperature, because their larger parallel transport works like
a smoothing filter. The same behaviour can be seen for all
sections of the device.

11. Outlook and summary

An interesting collaboration is planned with the DIII-D team.
In this device a special set of compensation coils (so-called
C-coils) is used to optimize the core plasma performance by
nulling a presumed error field at the q = 2 surface. As a
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consequence, in some operational scenarios an ergodic region
arises at the edge, as can be seen from field line tracing
calculations [15]. E3D will be used to investigate the effect
of stochasticity on the transport properties and by this on the
plasma distribution. Even without active C-coils (due to coil
misalignments), the separatrix is replaced by a thin ergodic
layer, whose impact on the plasma is also interesting in its
own right.

We demonstrated that proper modelling of plasma
transport in ergodic magnetic fields requires the use of local
magnetic coordinates. The price we have to pay is the inclusion
of the full metric tensor in the numerics. By doing this,
all transport terms can be treated consistently without any
approximation. This method has a large variety of applications,
some of which have been presented here.
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