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Abstract
A quasi-isodynamic stellarator with poloidally closed contours of the magnetic field strength B (Mikhailov 2002
Nucl. Fusion 42 L23) has been obtained by an integrated physics optimization comprising MHD and neoclassical
theory. For a configuration with six periods and aspect ratio approximately 12, a main result is the attainability of
an essentially MHD-stable high-β (〈β〉 ≈ 0.085) plasma with low neoclassical transport, approximately vanishing
bootstrap current in the long-mean-free-path regime and excellent α-particle confinement.

PACS numbers: 52.20.Dq, 52.25.Xz, 52.30.Cv, 52.35.Py, 52.55.−s, 52.55.Hc

1. Introduction

In non-optimized stellarators the collisionless confinement
times of energetic reflected particles are much shorter than their
slowing-down time in a fusion-grade device. The achievement
of such long collisionless confinement times in stellarators with
a truly 3D structure of the field strength B is a computationally
demanding problem if transitional particles (these are particles
which are neither passing nor permanently reflected within
one period) exist because they tend to get lost by collisionless
stochastic diffusion [1]. A quasi-isodynamic (qi) stellarator
with poloidally closed contours of B eliminates this class of
particles and can exhibit excellent fast-particle confinement
[2,3]. Configurations of this type have sometimes been called
quasi-poloidally symmetric. In contrast to quasihelical (qh)
and quasi-axial (qa) symmetry, quasi-poloidal symmetry does
not exist in any approximation in a toroidal plasma; therefore,
here, the notion qi is preferred.

In this work, integrated stellarator optimization is used
to show that high MHD-stable plasma β, low neoclassical
transport, vanishing bootstrap (bs) current and good α-particle

confinement can be achieved simultaneously for qi stellarators
with poloidally closed contours of B.

2. Physics goals of the optimization

The conceptual core of the optimization is the strive for
constancy of the second adiabatic invariant J on flux surfaces
for all reflected particles in a configuration with poloidally
closed contours of B [3]. Therefore, the latter property of a
configuration is a prerequisite for this type of optimization.
Earlier examples of qi optimization (see, e.g. [4]) were
obtained by direct optimization of collisionless fast-particle
confinement and did not have this property, but exhibited the
strongest poloidal variation of B in the toroidal neighbourhood
of their maximal magnetic field strength. On the other hand
configurations exist in which the contours of B are poloidally
closed in the region of maximal magnetic field strength because
this just requires a straight plasma section in the neighbourhood
of this maximum. In the integrated case study which will be
discussed here, this property is approximately, but sufficiently,
realized. An even closer approximation can easily be obtained
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Figure 1. The contours of B on the magnetic surface (at half of the
minor plasma radius) blue to red: minimum to maximum of B. It is
seen that a very small residual local maximum of B still exists. The
maximum is 1.55 while the first adjacent poloidally closed contour
has B = 1.51, but is not shown in this figure for clarity.

by further optimization towards this property, as is seen in
figure 1 by comparison with figure 3.

Ideal achievement of constancy of J on flux surfaces
for all reflected particles in a configuration with poloidally
closed contours of B has significant consequences for the ideal-
MHD equilibrium as well as for the bootstrap current density:
an ideal-MHD equilibrium without net toroidal current on a
magnetic surface then has current density lines which close
within one period and the bs current density then vanishes
in the long-mean-free-path (lmfp) regime consistent with the
assumption of vanishing net toroidal current. These statements
are proven in the appendix.

In an integrated optimization, the coincidence of the J
contours with the flux surfaces is not perfect so that other
neoclassical properties have to be considered in addition.
Besides the J contours, here the neoclassical equivalent ripple
(characterizing the 1/ν transport of the electrons) and the
structural factor characterizing the bs current in the lmfp
regime are evaluated by integration along field lines [5–7] and
integrated into the penalty function of the optimization.

Further, as far as ideal MHD is concerned, besides
evaluating the Mercier and resistive-interchange criteria [8],
here the instability of possibly asymmetric (with respect to the
stellarator symmetry of the configurations considered here)
local ballooning modes [9] has now been integrated in the
optimization.

Thus, the penalty function contains the deviation of the
J contours from the magnetic surfaces, the neoclassical ripple
and structural factor of the bs current, the Mercier and resistive-
interchange criteria and asymmetric local ballooning modes.
The independent variables of the optimization are the shape
parameters of the plasma-boundary surface. Each evaluation
of the penalty function requires a fixed-boundary VMEC
[10] equilibrium as input for the evaluation of the above
physics properties. The optimization in the space of boundary
variables is unconstrained and performed with the NAG library
(E04UCF).

Figure 2. Boundary magnetic surface of the optimized
configuration also showing the magnetic topography. The colours
define the range of the magnetic field strength (red—maximum,
blue—minimum, (Bmax − Bmin)/B ≈ 0.5). The characteristic
feature of the configuration is the nearly vanishing curvature of the
plasma column in the regions of the extrema of B.
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Figure 3. The contours of B on the magnetic surface (at half of the
minor plasma radius). It is seen that a small residual local maximum
of B still exists.

Figure 4. Near-axis magnetic surface and contours of B, six open
ones and one topologically spherical one which encloses the
minimum of B; the colour coding is similar to that in figures 1 and 3.

Major properties that are not targeted directly are the
collisionless α-particle confinement (as opposed to earlier
optimizations [4]) and the MHD stability with respect to
nonlocal ballooning-type [11] as well as free-boundary modes
[12], whose growth rates are given, too. Also, a vacuum field
magnetic well is not targeted.

3. Results

Here, results of the integrated optimization are presented
in detail. In figures 2–4 the geometrical outlook of the
configuration together with its structure of the magnetic field
strength is shown. As seen in figure 2, the geometry, broadly
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Figure 5. J contours for increasing values of Bref in polar-coordinate representation
√

s, θ with s the flux label. Labels i = 1, . . . , 6:
Bref = Bmin + i�B/7; �B = Bmax − Bmin. The red colour corresponds to maximal value of J showing the max-J property of this
configuration. The �J /J values change from ≈0.05 for the most deeply trapped to ≈0.01 for the most shallowly trapped particles.

viewed, is W7-X-like: characterized in terms of toroidal and
helical plasma-column curvatures; in one-half of the periods
the toroidal curvature adds to the helical curvature and here
a crescent-shaped flux surface occurs whereas in the other
half of the periods the toroidal curvature diminishes the helical
curvature and here a triangle-shaped cross section occurs. Up
to now, MHD-stable stellarators of the qh, qa and qi types all
exhibit these features. The special feature associated with the
poloidal closure of B toroidally everywhere is the region near
the crescent-shaped cross section. As a result of the integrated
optimization a toroidally rather narrow nearly straight plasma
section is established there so that the maximal strength of
B is not restricted to the inner side of the crescent cross
section as in W7-X but occurs throughout it. In figure 3 it
is seen that this situation is not established perfectly within the
integrated optimization but sufficiently in order to dominate
the collisionless fast-particle confinement as seen below. In
figure 4, one period of the plasma core centred around the
triangular cross section is shown and, in relation to it, surfaces
of constant B. Under the influence of the finite plasma β

(〈β〉 = 0.088) a true minimum of B exists at the triangular
cross section, so that a closed surface of B exists there.
With increasing toroidal distance from this minimum the
surfaces become open but still concave as seen by the reflected
particles oscillating between them. This feature causes the
maximum-J property shown in figure 5. This maximum
becomes more gentle with increasing reflection value of B.
At the boundary between reflected and passing particles the
integration length for the second adiabatic invariant becomes
the length of the field lines within one period which, for
ideal quasi-isodynamicity, is a constant on flux surfaces. This
length was not one of the target parameters of the integrated
optimization but turns out to be essentially flat across the
plasma cross section so that peripheral field lines are not
significantly longer than the magnetic axis. Obviously the
alignment of the contours of J with the magnetic surfaces is
excellent as considered on the scale of the plasma radius. The
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Figure 6. Loss histories of 1000 α-particles started at half and 2
3 of

the plasma radius and randomly distributed in the angular variables
and the pitch angle. Normalization: plasma volume 103 m3,
magnetic fields 5 T (blue and green) and 3 T (red). Each symbol
marks the loss of one particle. The lines at about 46% indicate the
fractions of reflected particles.

energetic-particle confinement associated with this structure
of J contours was checked independently and found to be
excellent, see figure 6.

On the scale of deviations of collisionless electrons from
flux surfaces, however, these deviations are substantial so
that the J -contour optimization is in practice not sufficient
to guarantee a sufficiently low level of 1/ν transport of the
electrons in the lmfp regime. Therefore, the equivalent ripple
has been used as an additional target parameter in the integrated
optimization. Figure 7 shows the result which is similar to the
one obtained for W7-X [5, 6].

The last neoclassical property to be described is the
bootstrap current behaviour. As shown in the appendix the
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Figure 8. The structural factor of the bootstrap current as a function
of the normalized toroidal flux in comparison with two tokamak
(aspect ratio 2 (lower positive bs factor) and 4 (higher positive bs
factor) and a quasi-helically symmetric [15] configurations
approximately equivalent in aspect ratio and rotational transform.
The bs factor used here contains the square of the aspect ratio in
order to be normalized in such a way that it indicates �ι/ι, the
relative change in the rotational transform due to the bs current. The
two tokamak cases are shown to demonstrate this aspect ratio
dependence.

structural factor of the bootstrap current in the lmfp regime
vanishes for ideal quasi-isodynamicity of configurations
with poloidally closed contours of B. In accordance
with this concurrence the annihilation of this structural
factor is targeted in the integrated optimization and very
well achieved. Figure 8 shows this result in comparison
with quasi-helically symmetric and axisymmetric equivalent
configurations. Also, the current–density lines which are not
targeted in the integrated optimization, reflect their associated
behaviour, i.e. approximately closed in one period, see
figure 9.

Summarizing these findings one may conclude that the
neoclassical properties of the configuration obtained are
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Figure 9. Contours of j‖/B at half the plasma radius.
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Figure 10. The Mercier- and resistive-interchange stability criteria
at 〈β〉 = 0.088.

sufficiently benign. These properties hold simultaneously with
the MHD properties discussed below.

As basic requirements for low-shear stellarators a
rotational transform increasing to the outside and falling into
a window free of low-order rational values is considered
as a target for equilibria without net toroidal current; this
window is chosen to be 6

7 < ι < 6
6 . Stability of Mercier-

as well as resistive-interchange-mode criteria is maintained,
see figure 10, for an equilibrium with 〈β〉 = 0.088 in order
to avoid low-node-number internal and external ideal MHD
modes.

The behaviour with respect to local ballooning modes is
characterized as follows. While they are unstable at 〈β〉 =
0.088, see figure 11 (top), they become stable at 〈β〉 = 0.065.
With a view to the stability of nonlocal modes, see below, they
must be small-scale modes in the range between 0.065 and
0.085.

With respect to non-local MHD modes, the stabil-
ity properties are characterized by two types of stability
calculations with CAS3D (see, e.g. [11]). First, a sta-
bility boundary, 〈β〉 = 0.085, is obtained with nonlocal,
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Figure 11. Most unstable (blue) regions on a magnetic surface as
obtained from the local-ballooning analysis (top); normal
displacement of a nonlocal ballooning mode on the same magnetic
surface (bottom). Shown are two out of six periods (vertical:
−0.5 < θ < 0.5, horizontal: 0 < φ < 2, the latter value
corresponding to two periods). In detail (bottom): contours for the
most unstable medium-node-number perturbation at 〈β〉 = 0.088 on
the magnetic surface enclosing half of the normalized toroidal flux,
s = 0.5. Dark blue (red) is for strong inward (outward) normal
displacement which occurs in a band on the outside of the torus
around θ = 0. Computation parameters: 101 radial points, 280
normal displacement harmonics, field-perturbation normalization,
vanishing adiabatic index γ = 0, N = 1 mode family, phase-factor
transform [16] with M = 20, N = −19.

however medium-scale modes by employing an eigen-
mode normalization eliminating the shear-Alfvén continuum
(cf [13]). The mode structure of this mode is seen in figure 11
(bottom). The comparison of the structures, local balloon-
ing versus amplitude of nonlocal mode, shows their close
correspondence. Second, the growth times (e-folding times)
of medium-scale free-boundary modes at 〈β〉 = 0.09 and
〈β〉 = 0.10 are obtained with the kinetic energy as phys-
ically appropriate normalization; they are given by τe =√

µoρo(0)/|λMHD| with µo the permeability of free space,
ρo(0) the mass density at the magnetic axis and λMHD the
eigenvalue in MHD-convenient normalization (square of per-
turbation field divided by perturbation) (T /m)2. Thus, τe =
B/(vA

√|λMHD|) = [B/(Lcurv
√|λMHD|)]τA with the Alfvén

speed at the magnetic axis taken with the average B there
and an Alfvén time defined by τA = Lcurv/vA with Lcurv

the connection length between favourable- and unfavourable-
curvature regions which, in qi stellarators, is approximately
half the period length. For W7-X-typical high-β parameters
(deuterons, n(0) = 3 · 1020, Bo = 1, Lcurv ≈ 3.5 in SI units),
τe ≈ 26 µs ≈ 7τA is found at 〈β〉 = 0.10 and about 20τA

at 〈β〉 = 0.09. Figure 12 shows the structure of the mode at
〈β〉 = 0.10 revealing that the ballooning property is dominant.

Finally, figure 13 shows the geometry of the configuration
obtained by way of its characteristic cross-sections and its
rotational transform profile. Evaluated at β = 0, this plasma

Figure 12. Normal displacement contours for the most unstable
medium-node-number free-boundary perturbation at 〈β〉 = 0.1.
One-half of six field periods of the plasma column is shown with the
tip of the triangular cross-section pointing to the outside of the torus.
Dark blue (red) is for strong inward (outward) normal displacement.
Computation parameters: 101 radial points, 279 normal
displacement harmonics, 279 (721) η (µ) harmonics describing the
in-surface displacement, kinetic-energy normalization, adiabatic
index γ = 5/3, N = 1 mode family, infinite vacuum region.

shape exhibits a small magnetic well, 0.7% (by comparison, the
well in the configuration optimized for W7-X: 1%). Mercier
and resistive-interchange stability holds for all β values below
the one used for the optimization and the ballooning stability
limit is improved [11] which indicates that the configuration
found here exhibits locally less unfavourable curvatures.

4. Conclusion

With the advent of qh, qa, qi configurations it may seem
that a general aspect of stellarator configurational space
has been explored because all three possible directions
of reflected-particle drifts—helical, axial and poloidal—are
realized. Nevertheless, details of the structural properties of
the stellarator configurational space remain to be explored. In
this case study it has been shown that a specific combination
of physical properties appears possible: the simultaneous
realization of a high-β MHD stable plasma with low
neoclassical transport, approximately vanishing bs current in
the lmfp regime and excellent α-particle confinement.

Appendix

Consider a net toroidal-current (Jt) free MHD equilibrium with
poloidally closed contours of the field strength B and a single
minimum and a single maximum of B per period. It seems
that such an equilibrium is most intuitively described by the
non-periodic invariant coordinate system Ft, θ0, B with Ft the
toroidal flux labelling the magnetic surfaces and θ0 labelling
the field lines. Then

�B = ∇Ft × ∇θ0.
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rotational transform as a function of normalized toroidal flux in the
lowest panel. The size normalization used is a small plasma radius
of about 1, so that the axes R and z are given in this normalization.

The increment in θ0 in one period comparing two equivalent
space points is �θ0 = ιperiod. With J the second adiabatic
invariant and the assumption

J = J (Ft) for all reflection values Bref

one sees from J ∝ ∫ l+

0

√
Bref − Bdl +

∫ l−

0

√
Bref − Bdl =∫ Bref

Bmin

√
Bref − B∂Bl+dB +

∫ Bref

Bmin

√
Bref − B∂Bl−dB (with l−, l+

the lengths from Bmin to B−
ref and B+

ref ) by computing ∂θ0J

∂θ0(dl− + dl+) = 0. (*)

Hence, in particular,

∂θ0

(∫ l+
max

0
B dl +

∫ l−max

0
B dl

)
= 0,

with l+
max, l

−
max the lengths from Bmin to B+

max and B−
max.

In addition, because of Jt = 0, on each rational field line
(with, e.g. n toroidal turns before closure on itself)

nNp

∫ B+
max

B−
max

B dl = nNpJp,

with Np the number of periods and Jp the poloidal current per

period, so that
∫ B+

max

B−
max

B dl = Jp.

On the other hand, for Jt = 0, the orthogonals to the field
lines in the magnetic surfaces are closed and Jp = ∫ �B · �dl

between any two points on the same magnetic surface on two
orthogonals one period apart. Starting the integration from
an intersection θ0,1 of an orthogonal to �B with a Bmax line
one sees that, after one period, the corresponding orthogonal
must intersect the corresponding Bmax line at θ0,1 + ιperiod, too.
Repeating this process shows a Bmax line to be an orthogonal
to the field lines. Finally, the increment in j‖/B,

�j‖/B = −dp/dFt∂θ0

∫ B+
max

B−
max

dl

B
,

vanishes because of (*) so that the current density lines are
closed within one period between the Bmax lines.

The bs current in the lmfp regime vanishes if two
integrals with the same structure as above, i.e. functions of B

(most compactly given, e.g. in [14]) integrated between Bmax

contours one period apart, vanish.
Similarly, because of

dFt

dt
= − 1

qB2

(
mv2

‖
B

+ µ

)
( �B × ∇Ft) · ∇B

the increment per period of Ft for passing particles, �Ft,

vanishes, too, so that the magnetic surfaces and the drift
surfaces of passing particles osculate at the Bmax contours.
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