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1. Introduction

The Variational Moments Equilibrium Code (VMEC [1]) provides data of magnetic field
configurations in flux coordinates. However, for different applications one needs input
data in a different representation, e.g., the stochastic mapping code |2] uses input data in
real space coordinates, or the neoclassical transport code [3] uses input data in Boozer
coordinates [4]. Therefore, the output data of VMEC need to be postprocessed, in
particular they have to be transformed to different coordinate systems. However, such
coordinate transformations are sensitive to the ill behaved VMEC output data near the
magnetic axis, in particular to the spectral representation of the cylindrical coordinates
R =Y Ryu(s)cos(mb —nyp) and Z = Y Ry, (s) sin(mé — ne) where (s, 6, ) are radial,
poloidal and toroidal flux coordinates.

A way to cure this problem is to smooth all Fourier amplitudes of R and Z using a
specially designed smoothing spline method while enforcing a leading dependence on
small values of the flux surface label s. Any smoothing procedure causes at least a slight
variation of the equilibrium. Therefore, the equilibrium is recalculated in a consistent
way based on the rotational transform ¢+ and smoothed Fourier amplitudes for R and Z.

2. Basics

VMEC solves the MHD equilibrium equations for nested flux surfaces|7]. The geometric
coordinates R and Z are expanded in Fourier series in both a poloidal angle variable and
a toroidal angle variable. The coefficients R,,, and Z,,, are functions of the normalized
toroidal flux s, where s = 0 represents the magnetic axis and s = 1 gives the outermost
closed flux surface. But there is a well known convergency problem near the magnetic
axis which cause ill behaved Fourier amplitudes of the coordinates R and Z. This
behavior may cause problems in particular if one needs a transformation from flux surface
coordinates which are used in VMEC to other coordinates. Therefore, it is necessary to
postprocess the output of VMEC.

The basic quantities R,,, and Z,,, for reconstructing the equilibrium are splined with a
specially designed smoothing spline (see 3). The recalculation of equilibrium quantities
is shown in 4. These quantities together with + allow the calculation of the components
of the magnetic field in cylindrical coordinates (see 5) and Boozer coordinates (see 6).

3. Spline
The near axis expansion causes integer powers of /s in the coefficients R,,, and Z,,,.
Due to this, an ordinary 3"¢ or 5 order spline can not reproduce the function with high
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accuracy. In fact, this gives unphysical magnetic fields, e.g. with oscillations around the
magnetic axis (see Fig. 2). Therefore, a test function ¢(s) is added to the spline. The
coefficients R,,, and Z,,, may contain kinks near s = 0. This problem can be solved
with the use of a smoothing spline. To create a spline with all these properties, one
starts with a usual 3"¢ order spline P(s). Multiplication with a test function ¢(s) gives
Sp(s) = t(s)P(s) with ¢(s) = s™? and m = 0,1,..., which is given from the near axis

n 2 . .
expansion. Now a smoothing term like & (P (s)) and a least squares approximation

TP {zj [t(s;) (@i + bihy + cih? + dih) — yj]Q} + L[t(sw)ay — yn]” in between the

nodes are added. This gives the following function, which has to be minimized:

1=l 2 1
Sp = 5 Zl {Z [t(Sj) (ai + bzhj + Czhi + dzh;)’) — yj] } + 5 [t(SN)a,N — yN]2
1= J
1 N-1

+_
> %

fzdf + NZ_I [ai (Cl,i + bzhz + CthQ + dzhf — ai+1)
i=1

+5i (bi + 2¢;h; + 3d;h} — bi+1) + i (¢i + 3dihi — cit1) |
+x1 (1by + vier + o1by + piey — K1) + X2 (H2bt + voc1 + 02by + pacy — K2)

The last two terms give a complete flexibility in using boundary conditions. It should
be noted, that it is quite difficult to find a proper value for the smoothing parameter
&. If the values for &; are too large, the equilibrium will be changed too much, and for
too small values the smoothing is not strong enough to obtain a good equilibrium. For
comparison of the results, the same procedure was also done for a 5 order spline. It
has been seen that the spline reacts more sensitive to the smoothing parameter and
that there has been no improvement of the equilibrium.

4. Recalculation of Equilibrium Quantities

The starting point for recalculating the equilibrium is the Clebsch representation of the
magnetic field B = Vs x Vv [1], with v = 4’0 — x'¢ + \. Here ¢ and x are the toroidal
and the poloidal flux, respectively, the prime denotes the derivative with respect to s,
and A is the so called stream function.

Internally, VMEC computes an additional stream function A to optimize, dynamically
and at every radial surface, the convergency rate in Fourier space for the spectral
sum > (R%, + Z2.). In VMEC however, X is not fully consistent. For consistent
recalculation of this internally computed A, one has to ensure (V x B) - Vs = 0. This
says that the current-density lines lie in constant s surfaces. This gives a linear elliptic
second order differential equation for A\. This equation is solved using the technique
of Fourier transformation. The comparison of a particular Fourier coefficient for A
from VMEC output and the consistently calculated one is shown in Fig. 1. With
given A and B, the poloidal current J = [, ., Bdl = [ B,dy and the toroidal
current I = [, 1.0, Bdl = [ Bydf can be calculated [6]. The radial force balance gives
p'= (I'xY' — J'U')/V' where the prime denotes the derivative with respect to normalized
toroidal flux s. Integration gives the pressure profile p(s).

5. B-Field Components in Real Space Coordinates
After transformation to cylindrical coordinates the components of the magnetic

field are B = [(xX' — )‘,QD)R,@ + (¥ + /\,H)R,cp]/\/gv B, = W + /\,G)R/\/g and
Bz =[(X'=Xp)Zo+ (V' +X6)Z ]//9 With \Jg = R(R¢Z s — R ,Z ) and x'(s) = +(s)¢'.
When |B| is computed with the smoothing spline including the test function #(s) for
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Figure 1: Comparison of a bad mode of stream function A from VMEC output (solid)

with consistent calculated A (dashed).

Ry and Z,,, and the consistently calculated stream function A, |B| is well behaved
and smooth, as can be seen in Fig. 2. If |B| is computed without the test function #(s)
strong oscillation around the magnetic axis appear.
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Figure 2: Comparison of the field calculated with consistent stream function A and
splines for R,,, and Z,,, with (solid) and without (dashed) test function t(s) for a high

B-field of W7-AS.

6. Transformation to Boozer Coordinates
To do the transformation from flux coordinates (s, 6, ¢) to the Boozer coordinate system
[5], the following relations 0 —tpp =0 — ¢t + A and 10 + Jop = 10+ Jp + w have to
be solved. The single valuedness of the magnetic field B with respect to # and ¢ has to
be taken into account, it is expressed through g = 0+0~(s, 0, ) and o = p+@(s,0,¢).
0 and ¢ are periodic functions with respect to # and ¢. Substituting the equation for
fp and g into the first equations in this paragraph, one finds that the functions 6 and
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@ are given by 0 = (s + JA)/(J 4+ +¢I) and ¢ = (w — I\)/(J + ¢I). These equations
provide the prescription for a transformation from the general magnetic coordinate
system (s, 8, ) to the Boozer coordinate system (s, 8z, pp).

7. Summary

If a B-field, based on an equilibrium calculated with VMEC, is to be transformed to
real space coordinates, unphysical effects appear around the magnetic axis. To avoid
these effects a specially designed spline is used for splining the coefficients R,,, and
Zmn- This causes slight variations of the equilibrium. Therefore, the stream function
A has to be recalculated consistently before other quantities like currents, components
of the B-field and the pressure profile may be computed. Further on, R and Z as
well as |B| are transformed to Boozer coordinates. Now a tool is available, which
allows a postprocessing of the VMEC output and provides improved equilibria in three
coordinate systems. The code is useful in various applications where a representation of
the magnetic field in real space is desired, such as ray-tracing or computation of high
energy ion orbits with taking Larmor gyration into account.
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