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Introduction

Recent measurements of the toroidal plasma rotation induced by the Dynamic Ergodic
Divertor (DED) at TEXTOR in the m = 3, n = 1 mode have shown that for magnetic
field rotation frequencies at ±1 kHz and for a static DED field the change in the rotation
is always in the direction of plasma current [1] and is independent of the frequency. This
feature had not been foreseen during the previous modeling efforts. In the present report a
linear kinetic Hamiltonian plasma conductivity model is used to describe the interaction.
This provides a better agreement with the experimental results.

The Model

The tokamak geometry is simplified to a straight periodic radially inhomogeneous cylin-
der with rotational transform of the magnetic field. In this geometry, the kinetic equation
with a Krook collision term is solved using the Hamiltonian formalism (see, e.g.[2]). Due
to the axial symmetry of the problem with respect to the Z-axis of the cylindrical co-
ordinates x = (r, ϑ, z), canonical action-angle variables can be introduced. The angles
θ = (φ, ϑg, zg) are the gyrophase, azimuth and z-coordinate of the guiding center, respec-
tively. The actions J = (J⊥, pϑ, pz) are the perpendicular invariant, J⊥ ≈ m0v

2
⊥/(2ωc),

and the covariant components of the generalized momentum, pk = (m0ṙ + eA/c)k over
ϑ and z variables. Here, c, e, m0, and ωc are speed of light, particle charge, mass, and
cyclotron frequency, respectively. In order to approximate the integral dependence over
radius of the current on the electric field by a differential operator, a Larmor radius ex-
pansion is introduced. The components of the Larmor radius vector and guiding center
coordinates are defined as

xl(θ,J) = xl
g(θ,J) + ρl(θ,J),

π∫
−π

dφ ρl(θ,J) = 0, (1)

where the guiding center coordinates, xg(θ,J) = (rg(J), ϑg, zg) are independent of the gy-
rophase. For a single spatial harmonic, Ẽl, j̃l ∝ exp (ik · x− iωt), where k ≡ (0, mϑ, kz)
and ω is the perturbation frequency, the perturbation current density can be written
through a differential conductivity operator acting on the perturbation electric field,

j̃k(r, ϑ, z) =
1

r

N∑
n,n′=0

(−1)n ∂n

∂rn

(
r σkl

(n,n′) (r,k)
∂n′

∂rn′ Ẽl(r, ϑ, z)

)
, (2)
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and where the second sum is zero if N − n < 1. Here N is the expansion order,
k · ρ = mϑρ

ϑ + kzρ
z, m = (mφ, mθ, kz), Ω = (ωc, h

ϑu‖ + vθ
E, hzu‖ + vz

E) are the canonical
frequencies, hi and vi

E are contra-variant components of the unit vector along the unper-
turbed magnetic field, h = B0/B0 (with B0 = ∇×A0), and of the electric drift velocity
due to the unperturbed electrostatic potential Φ0, respectively. In (3), the integration
variables r0 and u‖ are implicitly defined by

pϑ,z = pϑ,z(r0, u‖) =

(
m0h(r0)u‖ +

e

c
A0(r0) +

m0 c

B0(r0)
h(r0)×∇Φ0(r0)

)
ϑ,z

. (4)

The unperturbed distribution function is taken as an inhomogeneous drifting Maxwellian,

f0 =
n0(r0)

(2πm0T0(r0))
3/2

exp

(
−ωc(r0)J⊥

T0(r0)
−

m0

(
u‖ − V‖(r0)

)2
2T0(r0)

)
, (5)

with n0 the equilibrium density, T0 the temperature, and V‖ the parallel fluid velocity.
Forces acting on plasma can be obtained using the fact that in various frames of reference
the total absorbed power given by the integral of (1/2)Re(j̃kẼ∗

k) over the volume differs
only in the mechanical work. Assuming that the moving frame has constant velocity V k,
this difference is

Ptot − P ′
tot = V k

∫
d3x

√
gFk ≡ V kF tot

k , (6)

where F tot
k is the covariant component of the total force acting on the plasma (F tot

ϑ ≡ T
corresponds to a poloidal torque). It follows from the Lorentz transform of the fields and
current that the power in the moving frame is P ′

tot = (ω′/ω)Ptot where ω′ = ω − kjV
j is

the (Doppler shifted) frequency in the moving frame for the case V � c. Therefore, the
total force is

F tot
j =

kj

ω
Ptot. (7)

Results

For the modeling, the plasma conductivity in the lowest order Larmor radius expansion
N = 1 is used. An orthonormalization method is applied for the numerical solution of the
stiff set of first order ordinary differential equations resulting from Maxwell equations.
Two cases are considered, the collisionless case with ν = 0 and the collisional case where

ν for electrons and ions has been put to ν
e/i
⊥ and ν

i/i′

⊥ being the transverse diffusion
rates for electron-ion and ion-ion collisions, respectively. The modeling is performed for
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Fig. 1. Left panel without pressure gradients, right panel with pressure gradients. Solid - collisional,

dashed - collisionless. Horizontal axis represents the DED frequency f .

a, b) Radial magnetic perturbation
∣∣∣B̃r(r)

∣∣∣ for r = 35 cm. Horizontal line is the ideal MHD value.

c, d) Poloidal torque T = F tot
ϑ . Dotted vertical lines mark ion and electron diamagnetic frequencies.

parameters relevant to TEXTOR-DED. The cylinder period is L = 2πR0 where R0 = 175
cm. An ideally conducting wall and perturbation coil are assumed at rw = 60 cm and
ra = 53 cm, respectively. The main toroidal magnetic field is B0 = 2 T. The profile of
the safety factor q(r) with the location of the rational surface q = 3 at rres = 43.7 cm
has been used. Only the main harmonic of the perturbation current, m = 12, n = 4
is taken into account. Two cases are considered, the case without pressure gradients
(with constant plasma density and temperatures) and the case with pressure gradients
with parabolic plasma parameter profiles. Constant (or central) density and temperature
values are n0 = 1.05×1013 cm−3 and Ti = Te = 1.05 keV, respectively. The radial electric
field in the laboratory frame has been put to zero, Φ0 = const.
In the case without pressure gradient shown in Fig. 1 a, c, the magnetic field fully pen-
etrates into the plasma at low frequencies. In this case, the radial component, B̃r, of
the static DED field is very close to the result of ideal MHD theory [3] corresponding
to ∆′ = 0 (see Fig. 1 a). The direction of the torque coincides with the direction of
the rotation of the perturbation field and the maximum torque is reached at frequencies
around 1 kHz (see Fig. 1 c). This result is in agreement with previous modeling.



In the case with pressure gradients shown in Fig. 1 b, d, the direction of the torque is seen
to be in the direction of the diamagnetic current independent of the direction of the DED
field rotation as long as the DED frequency does not exceed a certain value, ωr, which is
of the order of the electron diamagnetic frequency ω∗e = (k⊥/n0ωcm0)d(n0Te)/dr where
k⊥ = (hzmϑ−hθkz)/r (see Fig. 1 d). Maximum penetration of the field is now at ω = ωr

(see Fig. 1 b). This feature can be explained considering the frequency dependence of
the total absorbed power which, following (7), is linked with the torque by the relation
Ptot = ωT/mϑ. In the simplest collisionless case, the total absorbed power is given by

Ptot = 2π3m2
0ωL
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where Hm are amplitudes of the Fourier series expansion of the perturbation Hamiltonian,
H̃ = ievkẼk/ω, over canonical angles, and vk is the particle velocity. The dominant
mechanism of absorption is Cerenkov (mφ = 0) resonance for electrons. Therefore, only
the electron contribution to Ptot need to be considered. Besides from ω, the sign of Ptot

is determined by the square brackets where the main contribution to the integral comes
from ω′′ which is the perturbation frequency in the frame of reference where the given
sort of ions is at rest,

ω′′ = ω − k‖V‖ − ω∗ − ωE. (9)

Here, k‖ = hϑmϑ + hzkz ≡ h · k and ωE is the E × B drift frequency which is zero for
the specific parameters used in the present computations. The remaining term in square
brackets which is proportional to the temperature gradient, and, in principle, is of same
order as ω′′ (the term with the derivative of V‖ is small) provides a 15 % negative shift
of the torque reversal frequency, ωr, away from the electron diamagnetic frequency ω∗e.
Since the force in the toroidal direction, F tot

z is expressed through the poloidal torque as
F tot

z = kzT/mϑ (see (7)), for frequencies in the range ω < ωr the toroidal force is in the
direction of plasma current. This force is for low frequencies practically independent of
ω and is finite for a static field. This is in agreement with the experiment [1].
The dependence of the components of the force acting on the plasma on the frequency is
such that it tends to bring the electron fluid to be approximately in rest with respect to
the rotating field (up do a difference between ωr and ω∗e). This feature is in a qualitative
agreement with long mean-free path drift MHD theory [4] which predicts a resonant
behavior and change of the sign of the force at ω = ω∗e. Note that in the range 0 < ω < ωr

where the direction of the torque is opposite to the direction of the field rotation, the
total absorbed power is negative. Therefore, measurements of the active part of DED
coil impedance are of interest to verify this theory.
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