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Methods of calculation of transport coefficients and efuilim parallel currents using in-
tegration along magnetic field lines [1, 2] have certain atlwges, such as high speed, good
convergence in low collisionality regimes as well as thesgubty of computations for mag-
netic fields given in magnetic and real space coordinatepaiticular, for magnetic fields
resulting directly from the Biot-Savart law or from new elguium codes such as PIES and
HINT. So far these methods were developed for asymptotmékonality regimes, namely,
Pfirsch-Schluter, plateau and\ regime. Here, the generalization of these methods for arbi-
trary collisionality regimes is described.

For the Lorentz collision model, the matrix of transport fficeents contains four coeffi-
cients - diffusion coefficient, bootstrap coefficient, Waiach coefficient and conductivity
coefficient. The first pair is obtained from the linearizedtdinetic equation where only the
radial gradient of the unperturbed distribution functismetained whereas the parallel electric
field is put to zero (gradient drive). For the second pair ithigce versa (electric field drive).
In regimes with small poloidal drift, the kinetic equaticr both cases can be presented in the
following dimensionless form,
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whereo is the sign of parallel velocitys is the distance counted along the m.fi].= (1 —
)\2)/I§ is a normalized perpendicular invariant (magnetic momé&ht) B/Bg is the magnetic
field module normalized to some reference magnetic fieldA = v| /v is pitch, k = 4/I¢
with Ic = v/vy andvy being mean free path and pitch-angle scattering frequeespectively.
Subscriptl = G, E denotes drives by gradient and by parallel electric fielspeetively. The
normalized distribution functiofi® and the source tergf’ in these two cases are
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wherey is some flux surface labelyg is the cyclotron frequency for the reference magnetic
field Bo, €, T andE; [ B are charge, temperature and parallel electric field, réispég and

A 1/4
VG=§<§—0)|DW||<G, (3)

with kg being the geodesic curvature [1]. The following integratsg the magnetic field line
and in velocity space define transport coefficients,
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Here, two normalized quantities are of interest, the ratimono-energetic diffusion coeffi-
cientDmonoto the plateau diffusion coefficie®pateau
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where 1 is rotational transform angleRy - reference value of big radius, amateay =
nv3/(8v/21Ryw?y), and the bootstrap factor [2]
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wherep is plasma pressure amds plasma radius defined in [1]. In the numerical computa-
tions,L must be large enough in order that the m.f.I. covers the niags@face rather densely
(hundreds of toroidal turns).

For the solution of (1), the method of Green'’s functions tbgewith an adaptive third order
conservative finite-difference discretization scheme ayes used. It should be noted that in
the long mean free path regime, which is of main interesteddpnce oiﬂ" on n is highly
non-uniform: it is rather steep in boundary layers betwea#arént classes of trapped particles
(positions of these layers are determined by the magneliiovidues at nearest local magnetic
field maxima) and it is rather smooth elsewhere. Since loametic field maxima are dis-
tributed between its global maximum and global minimumidtsot possible to introduce an
adaptive grid which resolves all boundary layers in the figld interval required for averag-
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ing. To overcome this problem, the field line is split into sotervals called “ripples” where
a local adaptive grid is introduced in order to resolve ohly local boundary layers. Denot-
ing with 8 ands’ left and right boundaries of this ripple, the distributiemétion of particles
leaving the ripple is expressed through the distributiorction of particles entering the ripple
as follows,
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whereQ/ () corresponds to a particular sourgg in (2). Respectively, the averages (4) are
given by sums of ripple averages

virr(O,L) = Z Vi (s,9), )

ripples

where ripple averages are expressed through the distibfuinction of incoming particles
and contributions to averages of local particle sourg%%, , as follows
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The set of functioné\°?, 9.gf andyl(llf’c)

which is called a “propagator”, is obtained 10?
numerically on the local-grid which is
specific for each ripple. Neighboring prop-
agators are linked with each other by bound- 10* }
ary conditions. Namely, at ripple bound-
aries, the distribution function of outgoingem
particles from one ripple is the same as the 10}
distribution function of incoming particles

to the next ripple. Since this distribution
function is discretized on different grids in 10 = 1@‘2 e
these ripples, a high order conservative re- TR/,
discretization scheme is used for matchin

ripples. The resulting discrete matching co
ditions define group relations of the propa
gators. With help of these relations, propaglelsympto“c"’lI value (red).
tors can be combined into joint propagators

plateau

-igure 1: Normalized diffusion coefficient vs
coII|5|onaI|ty parameter (blue) compared to
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(for two and more ripples).

During the numerical solution, each new propagator for glsinipple is joined to a com-
bined propagator for all previous ripples. Averages fos tombined propagator become in-
dependent on the distribution function of incoming paetscivhen the combined ripple length
becomes much larger than the mean free path. In this case,g&wl(llf’c) for the combined
propagator approximate the desired averages (4). Howieviae long mean free path regime
the required integration length can be very large. Theegfoithin a more efficient procedure,
after large enough number of toroidal turns such that the liileé re-enters a given small vicin-
ity of the starting point, integration is terminated andfil& line is claimed to be closed, as it

would be on a rational magnetic surface of

8r— ‘ ‘ high order. With this, left and right boundary
7t 1 ofthe combined propagat@s+£ 0 ands=L,
6l /\ 1 respectively) are joined together which pro-
5} 1 vides final values of all averages.
LA 1 For testing, the real space representa-
! 1 tion of the magnetic field of Wendelstein-
2 { 7AS [3] has been used. The mono-energetic
1t { diffusion coefficient normalized to the
0 plateau diffusion coefficient, Eq. (5), and
b - — bootstrap factor, Eq. (6), are plotted as func-
10 YR/ I 10 tions of collisionality parameter, /&Ry /|, in

. _ N Figures 1 and 2, respectively. For compari-
Figure 2. Normalized bootstrap coefficient VSon, also plotted are the asymptotical values

collisionality parameter (blue) compared tgs ihese parameters for/t-regime. These
asymptotical value (red). values have been computed by methods of
Refs. [1] and [2], respectively. For the diffu-
sion coefficient the agreement with the asymptotical vatugood, as fon\,, it can be seen
that the asymptotical value is not reached within the carsid collisionality range. Therefore,
collisions are important for bootstrap current even in@atbw collisionality regimes [4].
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