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Methods of calculation of transport coefficients and equilibrium parallel currents using in-

tegration along magnetic field lines [1, 2] have certain advantages, such as high speed, good

convergence in low collisionality regimes as well as the possibility of computations for mag-

netic fields given in magnetic and real space coordinates, inparticular, for magnetic fields

resulting directly from the Biot-Savart law or from new equilibrium codes such as PIES and

HINT. So far these methods were developed for asymptotical collisionality regimes, namely,

Pfirsch-Schlüter, plateau and 1/ν regime. Here, the generalization of these methods for arbi-

trary collisionality regimes is described.

For the Lorentz collision model, the matrix of transport coefficients contains four coeffi-

cients - diffusion coefficient, bootstrap coefficient, Warepinch coefficient and conductivity

coefficient. The first pair is obtained from the linearized drift kinetic equation where only the

radial gradient of the unperturbed distribution function is retained whereas the parallel electric

field is put to zero (gradient drive). For the second pair thisis vice versa (electric field drive).

In regimes with small poloidal drift, the kinetic equation for both cases can be presented in the

following dimensionless form,
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whereσ is the sign of parallel velocity,s is the distance counted along the m.f.l.,η = (1−
λ 2)/B̂ is a normalized perpendicular invariant (magnetic moment), B̂ = B/B0 is the magnetic

field module normalized to some reference magnetic fieldB0, λ = v‖/v is pitch, κ = 4/lc
with lc = v/νχ andνχ being mean free path and pitch-angle scattering frequency,respectively.

SubscriptI = G,E denotes drives by gradient and by parallel electric field, respectively. The

normalized distribution function̂f σ
I and the source termqσ

I in these two cases are
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whereψ is some flux surface label,ωc0 is the cyclotron frequency for the reference magnetic

field B0, e, T andE‖ ∝ B̂ are charge, temperature and parallel electric field, respectively, and
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with kG being the geodesic curvature [1]. The following integrals along the magnetic field line

and in velocity space define transport coefficients,
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Here, two normalized quantities are of interest, the ratio of mono-energetic diffusion coeffi-

cientDmono to the plateau diffusion coefficientDplateau
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where ι is rotational transform angle,R0 - reference value of big radius, andDplateau =

πv3/(8
√

2ι R0ω2
c0), and the bootstrap factor [2]
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wherep is plasma pressure andr is plasma radius defined in [1]. In the numerical computa-

tions,L must be large enough in order that the m.f.l. covers the magnetic surface rather densely

(hundreds of toroidal turns).

For the solution of (1), the method of Green’s functions together with an adaptive third order

conservative finite-difference discretization scheme over η is used. It should be noted that in

the long mean free path regime, which is of main interest, dependence off̂ σ
I on η is highly

non-uniform: it is rather steep in boundary layers between different classes of trapped particles

(positions of these layers are determined by the magnetic field values at nearest local magnetic

field maxima) and it is rather smooth elsewhere. Since local magnetic field maxima are dis-

tributed between its global maximum and global minimum, itsis not possible to introduce an

adaptive grid which resolves all boundary layers in the fieldline interval required for averag-
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ing. To overcome this problem, the field line is split into sub-intervals called “ripples” where

a local adaptive grid is introduced in order to resolve only the local boundary layers. Denot-

ing with sl andsr left and right boundaries of this ripple, the distribution function of particles

leaving the ripple is expressed through the distribution function of particles entering the ripple

as follows,
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whereQσ
I (η ) corresponds to a particular sourceqσ

I in (2). Respectively, the averages (4) are

given by sums of ripple averages

γII ′(0,L) = ∑
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where ripple averages are expressed through the distribution function of incoming particles

and contributions to averages of local particle sources,γ(loc)
II ′ , as follows
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Figure 1: Normalized diffusion coefficient vs

collisionality parameter (blue) compared to

asymptotical value (red).

The set of functionsAσσ ′
, Qσ

I , gσ
I andγ(loc)

II ′

which is called a “propagator”, is obtained

numerically on the localη -grid which is

specific for each ripple. Neighboring prop-

agators are linked with each other by bound-

ary conditions. Namely, at ripple bound-

aries, the distribution function of outgoing

particles from one ripple is the same as the

distribution function of incoming particles

to the next ripple. Since this distribution

function is discretized on different grids in

these ripples, a high order conservative re-

discretization scheme is used for matching

ripples. The resulting discrete matching con-

ditions define group relations of the propa-

gators. With help of these relations, propaga-

tors can be combined into joint propagators
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(for two and more ripples).

During the numerical solution, each new propagator for a single ripple is joined to a com-

bined propagator for all previous ripples. Averages for this combined propagator become in-

dependent on the distribution function of incoming particles when the combined ripple length

becomes much larger than the mean free path. In this case, averagesγ(loc)
II ′ for the combined

propagator approximate the desired averages (4). However,in the long mean free path regime

the required integration length can be very large. Therefore, within a more efficient procedure,

after large enough number of toroidal turns such that the field line re-enters a given small vicin-

ity of the starting point, integration is terminated and thefield line is claimed to be closed, as it
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Figure 2: Normalized bootstrap coefficient vs

collisionality parameter (blue) compared to

asymptotical value (red).

would be on a rational magnetic surface of

high order. With this, left and right boundary

of the combined propagator (s= 0 ands= L,

respectively) are joined together which pro-

vides final values of all averages.

For testing, the real space representa-

tion of the magnetic field of Wendelstein-

7AS [3] has been used. The mono-energetic

diffusion coefficient normalized to the

plateau diffusion coefficient, Eq. (5), and

bootstrap factor, Eq. (6), are plotted as func-

tions of collisionality parameter, 2πR0/lc, in

Figures 1 and 2, respectively. For compari-

son, also plotted are the asymptotical values

of these parameters for 1/ν -regime. These

values have been computed by methods of

Refs. [1] and [2], respectively. For the diffu-

sion coefficient the agreement with the asymptotical value is good, as forλb, it can be seen

that the asymptotical value is not reached within the considered collisionality range. Therefore,

collisions are important for bootstrap current even in rather low collisionality regimes [4].
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