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I ntroduction

In the present paper, using an analytic solution of the linearized drift kinetic equation in the
long-mean-free-path regime, formulas for neoclassical transport coefficients and for the par-
allel current density are obtained for stellarator configurations with realistic magnetic field
geometry. As in the standard neoclassical theory, for the solution of the linearized drift kinetic
equation, the deviation of the distribution function from a Maxwellian is expanded into a series
with respect to the collision frequency. The leading order term in this expansion is proportional
to 1/v. This leading term is sufficient to obtain the particle and energy fluxes in this regime.
In [1], this term is calculated taking into account all classes of trapped particles. Finally, the
results are presented in a form containing a line integral along the magnetic field line and an
integration over the perpendicular adiabatic invariant of trapped particles.

For the calculation of the parallel current density, also the next term in the expansion
over the collision frequency is necessary. In contrast to 1/v transport, where the contribution
of multiply trapped particles within many local magnetic field minima is small, they play an
essential role in the formation of the parallel current density. In [2], a method to calculate the
bootstrap current is proposed which utilizes Boozer coordinates and which is also based on a
line integration along the magnetic field line. Here, this procedure is generalized in two ways:
(i) the contribution of trapped particles is taken into account; and (ii) calculations can also be
done directly in real space coordinates. As a consequence of (i) also the local current density
can be calculated and can be shown to be consistent with results obtained from ideal MHD
equilibrium equations. In addition, also the problem with the interpretation of the boundary
condition at the trapped-passing boundary in [2] is solved.

The method is very flexible and can be used in cases when only a real space realization
of the magnetic field is available as well as in cases when a Boozer representation exists. The
second case is especially interesting for stellarator optimization studies because results can be
obtained numerically on a very fast time scale.

Basic formula and parameters

The starting point is the linearized drift-kinetic equation in the long-mean-free-path regime
with a simplified Lorentz collision operator which describes pitch angle scattering but does not
conserve momentum,
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where o is the sign of parallel velocity, s is the distance measured along the magnetic field
line, ¢ is the magnetic surface label, V¥ = V - V% is a radial component of the drift velocity,
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vﬁ =v?— J B, J. = v% /B is the perpendicular adiabatic invariant, B is the magnetic field
module, f;, is the Maxwellian distribution function, and v A is the pitch-angle scattering fre-
quency. As discussed in [2], for small magnetic field modulations within the magnetic surface,
the momentum preserving term will change the resulting value of the average parallel current
by a factor which is weakly dependent on the magnetic field geometry and, therefore, can be
taken from tokamak theory. The solution to (1) is looked for in a series expansion with respect
to the collision frequency,

f=fa+ao+fota+fit+..., 2)

where fi, g» ~ v* and f;, is constant whereas g, varies along the magnetic field line. In [1] we
obtained the leading order term in this expansion f_; taking into account all possible classes of
trapped particles. The leading term is enough to obtain the particle and energy fluxes in the 1/v
regime. In the present work we also derive g and fo which are necessary for the computation of
the parallel current density. The problem in the interpretation of the boundary condition at the
trapped-passing boundary in [2] where the “last” class of trapped particles cannot be identified,
does not appear if instead of an irrational surface one first considers a rational surface. In this
case, the number of classes of trapped particles stays finite, and the boundary conditions are
clearly defined. Then, the irrational surface can be considered as a limit case of a “true” rational
surface [3] which satisfies the closure condition for the equilibrium currents (Pfirsch-Schlliter),
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where L is the full magnetic field period and kg = (h x (h - V)h) - Vi /| V4| is the geodesic
curvature of the magnetic field line. When (3) is satisfied, the expression for the local parallel
current density is convergent and has the following form,

J 1 dp
% =—Cc/| B—ga, /\H = /\pS(S) + Ag, (4)
where c is the speed of light, p is the plasma pressure, and By is some reference magnetic field.
The radial derivative of the pressure and the magnetic surface averages of any function A of

spatial coordinates are given by
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The dimensionless quantities A\ps and Az in (4) which characterize the magnetic field geometry

are
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where J(ﬁf;zl = v2/B3%s corresponds to the trapped-passing boundary, B is the global
maximum of B on the particular magnetic field line, and s,,, is the position of this maximum.
For L being big enough, B2 approaches the global maximum of the magnetic field on the
surface. The integration along the magnetic field line must be performed simultaneously with
the V4 calculation actually done by solving additional linear differential equations when inte-

grating along the field line (see, e.g., [1]).

Contrary to Ag, the quantity Apg is a function of s. One can show that the varying part of
Apg Which corresponds to the Pfirsch-Schliiter current, is the same as it is obtained from ideal
MHD equilibrium equations. However, those equations do not restrict the constant part of the
parallel current. The missing constant part of j, /B is given by an average value of j;/B. Two
definitions of this average are commonly used. The first one, more suitable for equilibrium
studies, corresponds to the toroidal current density averaged over the area between two close
magnetic surfaces. It is obtained from (4) if ) is replaced with )y,
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where B¢ = B - Vy is the toroidal contravariant component of the magnetic field and with
surface averages defined in (5). The second definition used in [2] corresponds to the case when
the average parallel current vanishes completely in the Pfirsch-Schliiter regime,
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For comparison, one can transform the expression for the bootstrap current derived in magnetic
coordinates in [2] to real-space coordinates. The resulting expression would yield instead of
sz the quantity \,z. The difference between the two results, 6\, = Ay — Ay IS given as
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In accordance with the estimate performed in [2], this quantity is small compared to A, if the
modulation amplitude of the magnetic field module within the magnetic surface is small.

Results

The proposed technique has been applied to two magnetic configurations, a simplified [ = 3
configuration with parameters of the Uragan-3M torsatron (U-3M) and the vacuum W7-X
configuration. For the magnetic field, the representation in real space coordinates has been
used (see [4] for details). To simplify the comparison, we introduce the normalized quantity
5\1;1 = Mp1t4/r/R where ¢ is the rotational transform angle in 27 units, r is an average radius
and R is the big radius of the torus. This quantity is unity for a tokamak with a large aspect
ratio. The results of the calculation are shown in Fig. 1. The simplified U-3M configuration rep-
resents a standard stellarator with both the helical modulation and rotational transform rapidly
decreasing towards the magnetic axis. The bootstrap current for this configuration is close to
that of a tokamak as can be seen from the behavior of \,; which is positive and is close to unity
in @ major part of the considered region. At the same time, the W7-X configuration has been



optimized in order to reduce the bootstrap current. For this configuration |5\b1\ does not exceed
0.25 and at the outer region this quantity changes sign from negative to positive values.

Computational results for 1/ transport are given in Fig. 2 for various stellarator config-
urations. The dimensionless effective ripple amplitude eZ’f/f (see [1]) is presented as function
of the mean magnetic surface radius r expressed in units of the big torus radius or, for HSX,
in units of the radius were the magnetic axis is located. For comparison, also the results for
the quasi-helically symmetric configuration (QHS) and the drift-optimized version of CHS are
shown. A detailed discription of the configurations and the pertinent results can be found in
Ref. [4].
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Fig. 1. Parameters )\, (solid) and My Fig. 2. Parameter e, vs. mean mag-

(dashed) for Uragan-3M (label 1) and W7-
X (label 2) as a functions of the aspect ratio
r/R.

netic surface radius for the HSX (1), HSX-
M (2), W7-X (3), QHS (4), and the drift-
optimized CHS (5) configurations.

Summary

A technique for calculating the parallel equilibrium plasma current with the magnetic configu-
rations given in real space coordinates has been developed. Basically, the method is similar to
the method proposed in [2] where the magnetic configuration is given in Boozer coordinates.
In addition, the contribution of trapped particles which had been neglected in [2] is recovered
in the present work. As a result, the local current density calculated in this way is shown to be
consistent with the results obtained from ideal MHD equilibrium equations. Results are also
given for 1/v transport in various devices, derived along the line of the same unified approach
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