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Abstract: The Stochastic Mapping Technique (SMT) is an efficient method to solve the Drift
Kinetic Equation (DKE) in the long mean free path (LMFP) regime. To overcome the problem
of low computational speed, particles in SMT are followed only on Poincaré cuts instead of
following stochastic orbits as done in conventional MC methods. For this purpose, various
pre-computed maps, e.g., of particle motion between minimum-B cuts, are used.

Up to now the method has been numerically realized for magnetic fields given in real space
(cylindrical) coordinates [S.V. Kasilov, W. Kernbichler, V.V. Nemov, M.F. Heyn, Physics of
Plasmas 9, 3508 (2002)]. However, the majority of stellarator equilibria are available only in flux
coordinates, in particular in Boozer coordinates. In the present report, a numerical realization
of SMT in Boozer coordinates and various application of this technique to transport problems
in the long mean free path regime are discussed.

1. Introduction

The development of mapping technique has been initiated with the main purpose to
describe self-consistently the process of high power rf plasma heating in cases when such
process leads to the formation of non-Maxwellian distributions of plasma particles. This
changes the wave absorption properties and may influence power deposition profiles, in
particular, during ECRH and ECCD. In tokamaks, a problem of finding such a non-
Maxwellian distribution function in most cases is successfully solved with help of kinetic
equation solvers based on bounce-averaging theory which reduces the dimensionality of
the problem to three or two. In stellarators, due to the absence of axial symmetry, the
drift kinetic equation has to be solved in the whole phase space which can be handled,
in principle, with help of the Monte Carlo methods provided that the efficiency of such a
method is high enough. Since in the stochastic mapping technique (SMT) the straight-
forward integration of test particle drift orbits is replaced by the subsequent mapping
of the orbit footprints on the Poincaré cuts which are the surfaces where the magnetic
field has a minimum along the field lines (see Ref. [1] for the details), the gain in speed
scales with the number of steps needed to integrate the equations of particle motion
between the cuts. In case when the stellarator magnetic field is given by interpolation
on the spatial grid the gain in speed is two orders of magnitude. If the magnetic field
is obtained from the harmonic expansion in flux coordinates, this factor increases sig-
nificantly. The payment for the speed of the solver is the necessity to pre-calculate and
store a significant amount of orbit data which is used in mapping procedure in the form
of interpolation that takes 20-30 hours on a PC.
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Originally, stochastic mapping procedure has been developed for the magnetic fields
represented in the real space (cylindrical) coordinates. Relatively simple stellarator
magnetic field configurations, such as [2], have been considered. However, most stel-
larator configurations are available only in flux coordinates, in particular, those with
finite plasma pressure. Moreover, equilibria with finite pressure which do not assume
the existence of embedded flux surfaces needed for flux coordinates are also described in
the base coordinate system similar to flux coordinates. Therefore, the extension of SMT
to magnetic fields given in flux (Boozer) coordinates was necessary.

2. Peculiarities of mapping in flux coordinates and testing results.

In order to reduce the significant amount of storage of orbit maps to a practically man-
ageable level, already in the real space version of the code a kind of local magnetic
coordinate systems has been used. These are coordinates introduced within one toroidal
field period so that two of coordinate planes, x1 = const and x2 = const contain the
magnetic field lines, B · ∇x1 = B · ∇x2 = 0, like Clebsch coordinates, and coincide
with cylindrical coordinates R and Z on the reference toroidal cut ϕ = const. Coordi-
nate systems in neigbouring periods are linked with each other by a magnetic field map,
xi

next = X i(xprev), where functions X i(x) are given by high order (qubic) interpolation
on the grid of starting points x of the magnetic field line map obtained with help of
numerical field line integration from one reference cut to another. As a consequence,
maps of particle orbits from one Poincaré cut to another are described in terms of small
displacements of the trajectory from the starting field line (they scale with the Larmor
radius) which do not require extremely high accuracy needed to separate fast parallel
motion from relatively slow perpendicular. Thus, a second order interpolation in space
(over x1,2 coordinates) is used for the displacements which has to be done for the regions
with rather complex boundaries (see Figure 1).

In Boozer coordinates, magnetic field maps become very simple if one defines x1 = s and
x2 = θ0 ≡ θ − ιϕ where (s, θ, ϕ) and ι are toroidal flux normalized to the edge value,
poloidal and toroidal angles, and rotational transform angle, respectively: x1

next = x2
prev,

x2
next = x2

prev ± 2πι/n where n is a number of field periods. At the same time, the
region very near the magnetic axis is poorly described by mapping procedure since the
assumption of small displacements is violated there for x2 variable.

Since the dependencies of the orbit map on the test particle momentum module is repre-
sented by Taylor expansion, the dimensionality of necessary storage is reduced to three:
besides x1,2, the dependencies of mapping functions on the pitch, λ, are remaining. This
dependencies appear to be rather steep in case of realistic configurations, like W7X (see
Fig.2), and are handled using the adaptive grid over λ. Nevertheless, the overall accuracy
of interpolation of the maps appears sufficient in order to reproduce trapped collisionless
orbits in W7X during many periods of their drift motion. Therefore, in particular, SMT
can be used for the estimation of collisionless confinement of fast particles, assuming
that orbits in small Larmor radius approximation which follow the contours of parallel
adiabatic invariant are representative of fast particles.

Obvious advantage of flux coordinates for local computations of transport coefficients as-
suming infinitesimal value of Larmor radius can be used also in the mapping procedure:
The dimension of the storage can be reduced by one if one is interested in computa-
tions just on some particular magnetic surface, and, therefore, the pre-loading time is
decreased significantly. Therefore, application of SMT to the computation of transport



coefficients in the long mean free path regime can be of interest. First test results of
the mono-energetic transport coefficient computations are shown in Fig.3. In particular,
collisionality scans with finite the radial electric field agree with corresponding scans in
Ref. [3].
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Figure 1: Poincaré cuts in W7-X (left) and collisionless particle orbits in W7-X without
radial electric field for various starting values of pitch (right). The magnetic axis and
the starting point of orbits are marked by black dots.
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Figure 2: Transition time, τb, (left) and displacement over flux label after one transition
between Poincaré cuts, ∆s, in W7-X (blue) and LHD-360 (red).
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Figure 3: Normalized transport coefficients in the 1/ν-regime vs. collisionality for LHD-
375 (blue), LHD-360 (red), CHS-qa (black), W7-X (magenta) and NCSX (green) (left).
Normalized transport coefficients vs. collisionality for LHD-375 with and without radial
electric field, cE/vB0 = 0 (blue), 3 · 10−5 (green), 1 · 10−4 (yellow), 3 · 10−4 (red) (right).
Dashed curves in both plots represent normalized transport coefficients computed from
ε
3/2
eff given by the NEO code.


